首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of surface charge density on DNA hybridization have been investigated on a mixture of hydrogen-, oxygen-, and amine-terminated diamond surfaces. A difference in the hybridization efficiencies of complementary and mismatched DNA was clearly observed by fluorescence and potentiometric observations at a particular coverage of oxygen. In the fluorescence observation, singly mismatched DNA was detected with high contrast after appropriate hybridization on the surface with 10-20% oxygen coverage. The amount of oxygen in the form of C-O(-) (deprotonated C-OH) producing the surface negative-charge density was estimated by X-ray photoelectron spectroscopy. Electrolyte solution gate field-effect transistors (SGFETs) were used for potentiometric observations. The signal difference (change in gate potential) on the SGFET, which was as large as approximately 20 mV, was caused by the difference in the hybridization efficiencies of complementary target DNA (cDNA) and singly mismatched (1MM) target DNA with a common probe DNA immobilized on the same SGFET. The reversible change in gate potential caused by the hybridization and denaturation cycles and discriminating between the complementary and 1MM DNA targets was very stable throughout the cyclical detections. Moreover, the ratio of signals caused by hybridization of the cDNA and 1MM DNA targets with the probe DNA immobilized on the SGFET was determined to be 3:1 when hybridization had occurred (after 15 min on SGFET), as determined by real-time measurements. From the viewpoint of hybridization kinetics, the rate constant for hybridization of singly mismatched DNA was a factor of approximately 3 smaller than that of cDNA on this functionalized (oxidized and aminated) diamond surface.  相似文献   

2.
The binding of zinc-porphyrin-anchored linear DNA to supported lipid membranes was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The hydrophobic anchor is positioned at the ninth base of 39-base-pair-long DNA sequences, ensuring that the DNA is positioned parallel to the membrane surface when bound, an important prerequisite for using this type of construct for the creation of two-dimensional (2D) DNA patterns on the surface. The anchor consists of a porphyrin group linked to the DNA via two or three phenylethynylene moieties. Double-stranded DNA where one of the strands was modified with either of these anchors displayed irreversible binding, although binding to the membrane was faster for the derivatives with the short anchor. The binding and subsequent hybridization of single-stranded constructs on the surface was demonstrated at 60 °C, for both anchors, revealing a coverage-dependent behavior. At low coverage, hybridization results in an increase in mass (as measured by QCM-D) by a factor of ~1.5, accompanied by a slight increase in the rigidity of the DNA layer. At high coverage, hybridization expels molecules from the membrane, associated with an initial increase, followed by a decrease in DNA mass (as detected both by QCM-D and by an optical technique). Melting of the DNA on the surface was performed, followed by rehybridization of the single-stranded species left on the surface with their complementary strand, demonstrating the reversibility inherent in using DNA for the formation of membrane-confined nanopatterns.  相似文献   

3.
Conjugates of DNA and gold nanoparticles (AuNPs) typically exploit the strong Au-S chemistry to self-assemble thiolated oligonucleotides at AuNPs. However, it remains challenging to precisely control the orientation and conformation of surface-tethered oligonucleotides and finely tune the hybridization ability. We herein report a novel strategy for spatially controlled functionalization of AuNPs with designed diblock oligonucleotides that are free of modifications. We have demonstrated that poly adenine (polyA) can serve as an effective anchoring block for preferential binding with the AuNP surface, and the appended recognition block adopts an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can also be systematically modulated by adjusting the length of the polyA block. Significantly, this diblock oligonucleotide strategy results in DNA-AuNPs nanoconjugates with high and tunable hybridization ability, which form the basis of a rapid plasmonic DNA sensor.  相似文献   

4.
The accessibility and binding affinity of DNA are two key parameters affecting the hybridization efficiency in surface-based biosensor technologies. Better accessibility will result in a higher hybridization efficiency. Often, mixed ssDNA and mercaptohexanol monolayers are used to increase the hybridization efficiency and accessibility of surface-bound oligonucleotides to complementary target DNA. Here, no mercaptohexanol monolayer was used. We demonstrate by differential microcantilever deflection measurements at different pH that the hybridization efficiency peaks between pH 7.5 and 8.5. At low pH 4.5, hydration and electrostatic forces led to tensile surface stress, implying the reduced accessibility of the bound ssDNA probe for hybridization. In contrast, at high pH 8.5, the steric interaction between neighboring ssDNA strands was decreased by higher electrostatic repulsive forces, bending the microcantilever away from the gold surface to provide more space for the target DNA. Cantilever deflection scales with pH-dependent surface hybridization efficiency because of high target DNA accessibility. Hence, by changing the pH, the hybridization efficiency is adjusted.  相似文献   

5.
Since we observed that dendron-assembled surface provided high single nucleotide polymorphism discrimination efficiency for DNA microarrays, and that the binding yield for streptavidin increased when biotin was immobilized on top of it, the nanoscale-controlled surface is examined for surface plasmon field-enhanced fluorescence spectroscopy (or SPFS). Firstly, a silica film was coated onto a gold substrate using the sol-gel technique, followed by the covalent immobilization of a layer of second-generation dendrons with a DNA catcher strand at their apex. The thickness of the inorganic interlayer (d=33 nm) was effectively suppressing fluorescence quenching. Thus, the kinetics and affinity characteristics of DNA hybridization could be investigated very sensitively by SPFS. The kinetic rate constants found for DNA hybridization on the dendron-modified surface were larger than those reported for a streptavidin-modified surface by one order of magnitude, except for dissociation rate constant for a single mismatched case. In addition, we observed that the DNA on the cone-shaped linker maintained its capability to capture DNA target strands even after extended storage at ambient conditions.  相似文献   

6.
We have developed a microfluidic device operating at a planar surface instead of a closed channel network. The fluid is transported in single droplets using surface acoustic waves (SAW) on a piezoelectric LiNbO(3) substrate. The surface of the piezo is chemically structured to induce high contact angles of the droplets or enclose areas where the liquid can wet the substrate. Combining the SAW technique with thin film resistance heaters, a biological analysis chip with integrated DNA amplification by PCR and hybridization was designed. To prevent evaporation of the PCR reagents at high temperatures the sample is enclosed in droplets of mineral oil. On this chip the SAW resolves dried primers, shifts the oil capped liquid between the two heaters and mixes during hybridization. The chip is able to perform a highly sensitive, fast and specific PCR with a volume as low as 200 nl. During the temperature cycles an online monitoring of the DNA concentration is feasible with an optical unit, providing a sensitivity of 0.1 ng. After PCR the product is moved to the second heater for the hybridization on a spotted DNA array. With our chip we were able to detect a single nucleotide polymorphism (SNP) responsible for the Leiden Factor V syndrome from human blood.  相似文献   

7.
An electrochemical DNA biosensor for human papillomavirus (HPV) 16 detection has been developed. For this proposed biosensor, l-cysteine was first electrodeposited on the gold electrode surface to form l-cysteine film (CYSFILM). Subsequently, HPV16-specific probe was immobilized on the electrode surface with CYSFILM. Electrochemistry measurement was studied by differential pulse voltammetry method (DPV). The measurement was based on the reduction signals of methylene blue (MB) before and after hybridization either between probe and synthetic target or extracted DNA from clinical samples. The effect of probe concentration was analyzed and the best results were seen at 1000 nM. The hybridization detection presented high sensitivity and broad linear response to the synthetic-target concentration comprised between 18.75 nM and 250 nM as well as to a detection limit of 18.13 nM. The performance of this biosensor was also investigated by checking probe-modified electrode hybridization with extracted DNA from samples. The results showed that the biosensor was successfully developed and exhibited high sensitivity and satisfactory selectivity to HPV16. These results allow for the possibility of developing a new portable detection system for HPVs and for providing help in making an effective diagnosis in the early stages of infection.  相似文献   

8.
Zhang CY  Johnson LW 《The Analyst》2006,131(4):484-488
We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary target DNA through a sandwich hybridization reaction. The DNA hybrids were first caught and assembled on the surface of 605 nm-emitting QDs (605QDs) through specific streptavidin-biotin binding. The 525 nm-emitting QDs (525QDs) were then added to bind the other end of DNA hybrids. The coincidence signals were observed only when the presence of target DNA led to the formation of 605QD/DNA hybrid/525QD complexes. In comparison with a conventional QD-based assay, this assay provided high detection efficiency and short analysis time due to its high hybridization efficiency resulting from the high diffusion coefficient and no limitation of temperature treatment. This QD-based single-molecule coincidence detection offers a simple, rapid and ultra sensitive method for genomic DNA analysis in a homogenous format.  相似文献   

9.
A simple, polishable and renewable DNA biosensor was fabricated based on a zirconia modified carbon paste electrode. Zirconia was mixed with graphite powder and paraffin wax to produce the paste for the electrode, and response-optimized at 56% graphite powder, 19% ZrO(2) and 25% paraffin wax. An oligonucleotide probe with a terminal 5'-phosphate group was attached to the surface of the electrode via the strong affinity of zirconia for phosphate groups. DNA immobilization and hybridization were characterized by cyclic voltammetry and differential pulse voltammetry, using methylene blue as indicator. Examination of changes in response with complementary or non-complementary DNA sequences showed that the developed biosensor had a high selectivity and sensitivity towards hybridization detection (< or =2x10(-10) M complementary DNA detectable). The surface of the biosensor can be renewed quickly and reproducibly (signal RSD+/-4.6% for five successive renewals) by a simple polishing step.  相似文献   

10.
The effect of the surface chemistry of DNA recognition interfaces on DNA hybridization at a gold surface was investigated using both electrochemistry and the quartz crystal microbalance (QCM) technique. Different DNA recognition interfaces were prepared using a two-component self-assembled monolayer consisting of thiolated 20-mer probe single-stranded DNA (ss-DNA) containing either a 3'-mercaptopropyl or a 3'-mercaptohexyl linker group and an alcohol-terminated diluent layer with 2-, 6-, or 11-carbon length. The influence of the interfacial design on the hybridization efficiency, the affinity constant (Ka) describing hybridization, and the kinetics of hybridization was assessed. It was found that the further the DNA was above the surface defined by the diluent layer the higher the hybridization efficiency and Ka. The kinetics of DNA hybridization was assessed using both a QCM and an electrochemical approach to ascertain the influence of the interface on both the initial binding of target DNA to the surface and the formation of a complete duplex. These measurements showed that the length of the diluent layer has a large impact on the time taken to form a perfect duplex but no impact on the initial recognition of the target DNA by the immobilized probe DNA.  相似文献   

11.
We present a new strategy for the label‐free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5‐end were covalently linked onto the surface of AuNPs/PNR modified electrode via S‐Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR‐solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one‐mismatched and three‐mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10?12 M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

12.
Microelectronic DNA chip devices that contain planar arrays of microelectrodes have been developed for multiplex DNA hybridization and a variety of genomic research and DNA diagnostic applications. These devices are able to produce almost any desired electric field configuration on their surface. This ability to produce well-defined electric fields allows charged molecules (DNA, RNA, proteins, enzymes, antibodies, nanobeads, and even micron scale semiconductor devices) to be electrophoretically transported to or from any microlocation on the planar surface of the device. Of key importance to the device function is the permeation layer which overcoats the microelectrodes. The permeation layer is generally a porous hydrogel material that allows water molecules and small ions (Na+, CI-, etc.) to freely contact the microelectrode surface, but impedes the transport of the larger analytes (oligonucleotides, DNA, RNA, proteins, etc.). The permeation layer prevents the destruction of DNA at the active microelectrode surface, ameliorates the adverse effects of electrolysis products on the sensitive hybridization reactions, and serves as a porous support structure for attaching DNA probes and other molecules to the array. In order to maintain rapid transport of DNA molecules, facilitate hybridization, and work within constrained current and voltage ranges, low conductance buffers and various electronic pulsing scenarios have also been developed. These active microelectronic array devices allow electrophoretic fields to be used to carry out accelerated DNA hybridization reactions and to improve selectivity for single nucleotide polymorphism (SNP), short tandem repeat (STR), and point mutation analysis.  相似文献   

13.
Photolithographic in situ synthesis of nucleic acids enables extremely high oligonucleotide sequence density as well as complex surface patterning and combined spatial and molecular information encoding. No longer limited to DNA synthesis, the technique allows for total control of both chemical and Cartesian space organization on surfaces, suggesting that hybridization patterns can be used to encode, display or encrypt informative signals on multiple chemically orthogonal levels. Nevertheless, cross-hybridization reduces the available sequence space and limits information density. Here we introduce an additional, fully independent information channel in surface patterning with in situ l -DNA synthesis. The bioorthogonality of mirror-image DNA duplex formation prevents both cross-hybridization on chimeric l -/d -DNA microarrays and also results in enzymatic orthogonality, such as nuclease-proof DNA-based signatures on the surface. We show how chimeric l -/d -DNA hybridization can be used to create informative surface patterns including QR codes, highly counterfeiting resistant authenticity watermarks, and concealed messages within high-density d -DNA microarrays.  相似文献   

14.
《Electroanalysis》2017,29(4):1166-1171
We present an electrochemical biosensor for the analysis of nucleic acids upon hybridization on the β‐cyclodextrin (β‐CD)‐modified gold electrode. The strategy is based on the following: The 5’‐ferrocene‐labeled single stranded capture probe DNA (5’‐fc‐ss‐DNA) was incorporated into the cavity of thiolated β‐CD which was immobilized on the surface of gold electrode. After hybridization of complementary target DNA, hybridized double stranded DNA (ds‐DNA) was released from the cavity of β‐CD. The difference of electrochemical properties on the modified gold electrode was characterized by cyclic voltametry and surface plasmon resonance. We successfully applied this method to the investigation of the sensor responses due to hybridization on various concentrations of applied target DNA. As a result, the label‐free electrochemical DNA sensor can detect the target DNA with a detection limit of 1.08 nM. Finally, our method does not require either hybridization indicators or other signalling molecules such as DNA intercalaters which most of electrochemical hybridization detection systems require.  相似文献   

15.
In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.  相似文献   

16.
An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH_2 labeled,single strand DNA(NH_2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode(diazo-thiourea/GNM/Au).Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA(ssDNA) onto the electrode surface.Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH_2-ssDNA onto the electrode surface.The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry(DPV) using methylene blue(MB) as a well-known electrochemical hybridization indicator.The linear range for the determination of complementary target ssDNA is from 9.5(±0.1) × 10~(-13) mol/L to1.2(±0.2) x 10~(-9) mol/L with a detection limit of 1.2(±0.1) 10~(-13) mol/L.  相似文献   

17.
Morpholinos (MOs) are DNA analogues whose uncharged nature can bring fundamental advantages to surface hybridization technologies such as DNA microarrays, by using MOs as the immobilized, or "probe", species. Advancement of MO-based diagnostics, however, is challenged by limited understanding of the surface organization of MO molecules and of how this organization impacts hybridization kinetics and thermodynamics. The present study focuses on hybridization kinetics between monolayers of MO probes and DNA targets as a function of the instantaneous extent of hybridization (i.e., duplex coverage), total probe coverage, and ionic strength. Intriguingly, these experiments reveal distinct kinetic stages, none of which are consistent with Langmuir kinetics. The initial stage, in which duplex coverage remains relatively sparse, indicates confluence of two effects: blockage of target access to unhybridized probes by previously formed duplexes and deactivation of the solid support due to consumption of probe molecules. This interpretation is consistent with a surface organization in which unhybridized MO probes localize near the solid support, underneath a layer of MO-DNA duplexes. As duplex coverage builds, provided saturation is not reached first, the initial stage can transition to an unusual regime characterized by near independence of hybridization rate on duplex coverage, followed by a prolonged approach to equilibrium. The possible origins of these more complex latter behaviors are discussed. Comparison with published data for DNA and peptide nucleic acid (PNA) probes is carried out to look for universal trends in kinetics. This comparison reveals qualitative similarities when comparable surface organization of probes is expected. In addition, MO monolayers are found capable of a broad range of reactivities that span reported values for PNA and DNA probes.  相似文献   

18.
Sequence-specific detection and quantification of nucleic acids are central steps in many molecular biology procedures which have also been transferred to chip-based procedures. Hybridization-based assays can be used to quantify and discriminate between DNA target sequences down to the level of single base mismatches. Arrays of DNA probes immobilized on a support enable simultaneous testing of multiple sequences of a single sample. DNA arrays can be produced either by in-situ synthesis of oligonucleotides or by immobilization of pre-assembled DNA probes. Covalent and directed immobilization improves the reproducibility and stability of DNA arrays. This is especially interesting with repeated use of transducers or chips. Procedures are described for effective covalent immobilization of pre-assembled amino-linked oligonucleotides, by use of ink-jet techniques, on a modified and heated glass surface, with addressable surface areas ranging from 0.01 mm2 to a few mm2. Almost immediate evaporation of the spotted droplets on the heated surfaces leads to very high surface hybridization capacities. The surfaces are suitable for use with a label-free detection method - reflectometric interference spectroscopy (RIfS). It is shown that hybridization capacity and non-specific interaction at these DNA-surfaces can be characterized by use of RIfS. With a consumption of less than 80 ng mm(-2) oligonucleotide and a specific hybridization capacity of more than 300 fmol mm(-2), the activated aminodextran procedure was usually suitable for setting up a DNA array with label-free detection. Non-specific interactions with random oligomers or protein (ovalbumin) were low. Up to 150 repeated regenerations (stripping) of the surfaces by acid treatment and denaturing agents, and 50 days of storage, have been possible without significant loss of hybridization capacity.  相似文献   

19.
A screening analysis of DNA hybridization and the presence of DNA mutations using an surface plasmon resonance (SPR) biosensor is shown. The influence of lateral and vertical spacers, as well as several hybridization conditions, was studied to optimize the differentiation between fully complementary and mismatched DNA strands. Our results demonstrated that SPR biosensors were able to detect mismatch sequences related to inherited breast cancer, with high specificity and sensitivity. Using PCR synthetic sequences as targets, mutant sequences were clearly discriminated from fully complementary ones, and detection limits below 50 nM were achieved.  相似文献   

20.
A new electrochemical DNA sensor providing detection capabilities down to 100 attomol of target DNA has been developed. The method applies CdS, ZnS, and PbS nanoparticles conjugated with short DNA sequences which are immobilized via hybridization with complementary sequences on a gold surface. When the DNA target is added, it can be identified by ousting the existing hybridization between one of the DNA-nanoparticle conjugates and the surface DNA. The nanoparticles remaining at the surface are detected by stripping voltammetry. The setup is constructed to give a signal-off response with a build-in control signal as only one of two different metal sulfide signaling probes on the surface is removed by hybridization with the DNA target. The competition assay is, in principle, label-free since no labels are required for detection after addition of DNA target. The dissociation of PbS nanoparticles from the surface after addition of the DNA target has been imaged by fluid phase AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号