首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of a number of cis-dioxomolybdenum(VI) coordination complexes involving tridentate (ONS) ligands is described. The Schiff base ligands were obtained by condensation of 5-substituted salicylaldehydes with o-aminobenzenethiol or 2-aminoethanethiol. The chemical properties of these molybdenum complexes are compared with those having tridentate ligands with the ONO donor atom set. Cyclic voltammetry was used to obtain cathodic reduction potentials (Epc) for the irreversible reduction of the Mo(VI) complexes. Although the reductions are irreversible, trends are observed in Epc both within each series and when different series are compared. Cathodic reduction potentials for the four series examined span the range from ?1.53 to ?1.05 V versus NHE. There are three ligand features whose effect systematically alters the Mo(VI) cathodic reduction potentials. These include (1) the X-substituent on the salicylaldehyde portion of each ligand; (2) the degree of ligand delocalization; and (3) the substitution of a sulphur donor atom for an oxygen donor atom. Each of these effects is considered separately with regard to the Mo(VI) cathodic reduction potentials and then their cumulative effect is described.  相似文献   

2.
The stoichiometric oxidation of phosphanes or alcohols by a Mo(VI)-dioxo complex (1) followed both by UV spectroscopy results in the formation of a Mo(V) dimer with two μ-oxo bridges and two terminal oxo functions (3). Its structure is determined by an X-ray analysis depicting a Mo–Mo bond well in accord with the diamagnetic character of the complex. The spectroscopic follow up of the oxygen atom transfer process shows clearly that complex 3 is the end product of a series of intermediates among which one (2) is postulated as being a geometrical isomer of 3.  相似文献   

3.
Both dioxo Mo(VI) and mono-oxo Mo(V) complexes of a sterically restrictive N2O heteroscorpionate ligand are found to exist as cis and trans isomers. The thermodynamically stable isomer differs for the two oxidation states, but in each case, we have isolated the kinetically labile isomer and followed its isomerization to the thermodynamically stable form. The Mo(VI) complex is more stable in the cis geometry and isomerizes more than 6 times faster than the Mo(V) complex, which prefers the trans geometry. In OAT reactions with PPh3, the trans isomer of the dioxo-Mo(VI) reacts approximately 20 times faster than the cis isomer. Thus, there are both oxidation state and donor atom dependent differences in isomeric stability and reactivity that could have significant functional implications for molybdoenzymes such as DMSO reductase.  相似文献   

4.
Cis-dioxo-metal complex ( NH3CH2CH2NH2 ) 2.5 [ Mo0.5^(V)W0.5^(VI)O2 ( OC6H4O ) 2] 1 was obtained by the reaction of tetra-butyl ammonium hexamolybdotungstate with 1, 2-dihydroxybenzene in the mixed solvent of CH3OH, CH3CN and ethylenediamine,and characterized by X-ray diffraction, UV-vis and EPR analysis. Compared with its analogous complexes (NH3CH2CH2NH2)3[Mo^(V)O2(OC6H40)2] 2 and (NH3CH2CH2NH2)2[W^(VI)O2(OC6H4O)2] 3, the results show that tungsten(VI) is less active in redox than molybdenum (VI) and that the change of the valence induced by substitution of W(VI) for Mo(V) in EMO2(OC6H40)2]n- does not influence the coordination geometry of the complex anion in which the metal center exhibits distorted octahedral coordination with cis-dioxo catechol. The responses to EPR of complexes 1 and 2 are active but complex 3 is silent,and the UV-vis spectra exhibited by the three complexes are obvious different because of the different electronic configuration between the central Mo(V) and W(VI) ions in the complexes.It is noteworthy that complexes 1 and 2 have the similar EPR signal to flavoenzyme, suggesting that the three complexes have the same coordination geometry feature with the co-factor of flavoenzyme.  相似文献   

5.
《Polyhedron》1986,5(5):1119-1124
The synthesis and characterization of stable well-defined osmium(VI)-hydroxycarboxylic acid complexes is reported for the first time. The reaction of dipotassium tetramethylosmate(VI) with hydroxycarboxylic acids [glycolic, 2-hydroxyisobutyric, (S)-(+)-mandelic and o-salicylic] in the presence of pyridine led to the formation of trans-dioxo(oxoacidato)dipyridineosmium(VI) complexes. Elemental analysis, and IR, 1H NMR, 13C NMR and mass spectrometer were used to characterize the new complexes. A structure in which OOsO group is perpendicular to the plane produced by the two nitrogen atoms of the pyridine ligands and the two oxygen atoms of the oxoacidato group is proposed for the complexes. In the structure, oxoacidato groups form five- or six-membered rings with the osmium atom.  相似文献   

6.
Monooxo Mo(V) complexes of a N2O heteroscorpionate ligand designated (L10O) are found to exist as isolable cis and trans isomers. We have been able to trap the kinetically labile cis isomer and follow its isomerization to the thermodynamically more stable trans form. We have also followed the kinetics of isomerization between the cis and trans isomers of the corresponding dioxo Mo(VI) and W(VI) species. Here the trans is the labile isomer that spontaneously converts to the thermodynamically more stable cis. It is observed that at 60 degrees C in DMSO the Mo(VI) complex isomerizes approximately 6.5 times faster than the Mo(V) and nearly 5 times faster than the corresponding W(VI) analogs. The temperature dependence to the kinetics of the Mo(V) and Mo(VI) isomerizations give activation parameters that are similar for both oxidation states and consistent with those previously observed in [(L1O)MoOCl2] suggesting a similar twist mechanism is operating in all cases. Thus there are oxidation state, metal ion and donor atom dependent differences in isomeric stability that could have significant implications for understanding the mechanisms of both enzymatic and nonenzymatic oxo atom transfer reactions catalyzed by complexes of Mo, W and Re.  相似文献   

7.
A number of both experimental and computational studies have recently been reported for symmetric, six-coordinate dioxomolybdenum(VI) complexes as models of the fully oxidized form of the molybdopterin enzyme sulfite oxidase (SO). Such studies have suggested that the two terminal oxo donors in SO are electronically equivalent. However, the consensus structure of the catalytically competent Mo(VI) active site in SO is five-coordinate square pyramidal, possessing two terminal oxo donors, an ene-1,2-dithiolate chelate and a cysteine sulfur donor ligand. Computational studies at the density functional level of theory have been performed on a minimal model of the SO active site, [Mo(VI)O2(S2C2Me2)(SCH3)]-, in C1 symmetry to evaluate the composition of the LUMO, which is the putative electron acceptor orbital in the oxygen atom transfer (OAT) reaction with the sulfite substrate. The LUMO in this model is principally composed of a Mo dxy - ppi* interaction between the Mo and the equatorial oxygen (Oeq), while the axial oxygen (Oax) possesses no contribution to this orbital. In fact, the LUMO+1 orbital which possesses a substantial amount of Oax character lies nearly 1 eV higher in energy than the LUMO. It has also been suggested that changes in the Oax-Mo-Sthiolate-C torsion angle during the course of enzyme catalysis may aid in selection of Oeq for OAT. Calculations were performed in which this torsion angle was varied by 20 degrees through 360 degrees . These calculations demonstrate that the Mo dxy -Oeq ppi* interaction, and therefore the Oeq atom character, always dominates the LUMO. The results presented here suggest that oxygen atom selection and activation are a direct function of the low-symmetry structure of the oxidized SO active site and provide a role for the ene-1,2-dithiolate in promoting OAT reactivity through its kinetic trans effect on the equatorial oxo donor.  相似文献   

8.
New dioxomolybdenum(VI) complexes were obtained by the reaction of [MoO2(acac)2] with 4‐phenylthiosemicarbazone ligands derived from salicylaldehyde, 2‐hydroxy‐1‐naphthaldehyde, 2‐hydroxy‐3‐methoxybenzaldehyde or from 4‐(diethylamino)salicylaldehyde. In all complexes the ligands are coordinated to molybdenum as tridentate ONS‐donors through phenolic‐oxygen, imine‐nitrogen and thiol‐sulphur. Octahedral coordination of each Mo atom is completed either by one neutral donor molecule (D) or by the oxygen atom of the Mo=O unit from the neighbouring molecule. All compounds were characterized by means of chemical analysis, IR spectroscopy, TG and in some cases by DSC measurements, some of them by X‐ray crystallography, and by one and two‐dimensional NMR method.  相似文献   

9.
Four cis-dioxomolybdenum complexes of general formula [MoO2(Ln)EtOH] (n = 1–4) and one oxomolybdenum(IV) complex [MoO(L4)EtOH], with potentially tridentate Schiff bases derived from 5-methyl pyrazole-3-carbohydrazide and salicylaldehyde/substituted salicylaldehyde/o-hydroxy acetophenone have been prepared. The Mo(IV) complex is derived from the Mo(VI) dioxo complex by oxotransfer reaction with PPh3. The complexes are characterized by elemental analysis, electronic spectra, IR, 1H NMR, and by cyclic voltammetry. All the Mo(VI) species are crystallographically characterized. The complexes have a distorted octahedral structure in which the ligand behaves as a binegative donor one, leaving the pyrazole –N uncoordinated towards the metal center. It is also revealed from the crystal structure that the Mo(VI) center enjoys an NO5 donor environment.  相似文献   

10.
Two O,S-donor ligands, hydroxythiopyrone and hydroxythiopyridinone derivatives, were developed and studied, as well as the corresponding O,O-derivatives, with a view to their potential pharmacological applications as xanthine oxidase (XO) inhibitors. The biological assays revealed that the O,S-ligands present high inhibitory activity towards XO (nanomolar order, close to that of the pharmaceutical drug allopurinol), in contrast to the corresponding O,O-analogues. Due to the biomedical relevance of this molybdenum-containing enzyme, the corresponding Mo(VI) complexes were studied both in solution and in the solid state, aimed at identifying the source of the biological properties. The solution studies showed that, in comparison with the O,O-analogues, the Mo(VI) complexes with the O,S-ligands present some stabilization, which is even more pronounced for the reduced Mo(IV) species. The crystal structures of the Mo(VI) complexes with the hydroxythiopyrone revealed good flexibility of the coordination modes, with two structural isomers and two polymorphic forms for a mononuclear and a binuclear species, respectively. These results give some support to mechanistic proposals for the XO inhibition involving the interaction of the thione group with the molybdenum cofactor, thus indicating a role of the sulfur atom in the XO inhibition.  相似文献   

11.
The reactions between bis(acetylacetonato)dioxomolybdenum(VI) and Schiff base ligands derived from 5-chlorosalicylaldehyde or 3-ethoxy-salicylaldehye, and 3-methoxy-benzoic hydrazide (m-anisic hydrazide), 2-furoic hydrazide or 2,4-dihydroxy-benzoic hydrazide in the presence of donor solvents yielded cis-dioxomolybdenum(VI) complexes with the general formula MoO2L(D), where L = tridentate Schiff base ligand and D = dimethylsulfoxide, hexamethylphosphoramide, dimethylformamide, imidazole or methanol. The complexes were characterized by elemental analysis, electronic spectra, IR, 1H and 13C NMR spectroscopies, thermogravimetric analysis, cyclic voltammetry, and the molecular structures of five of the dioxomolybdenum complexes were elucidated by single crystal X-ray diffractometion studies. In general, the complexes adopt an octahedral environment around the Mo center with a cis-oxo configuration. The other coordination sites are occupied by the imino nitrogen, phenoxyl oxygen, hydroxyl oxygen of the tridentate Schiff base and the donor atom of the solvent molecule. The structural data revealed that the labile coordination site, which is occupied by N or O atoms from the donor solvents, has a longer Mo-O or Mo-N bond distance.  相似文献   

12.
Distribution of citrate complexes of Co(II) and Mo(VI) in weakly acidic solutions is analyzed. It is found that the primary cathodic process is hydrogen evolution. When cathodic polarization is increased, Co(II) reduction is possible, while more negative potentials may result in full reduction of Mo(VI) to the metallic state. Reduction of H3O+ ions in the solutions of oxyacids occurs with participation of a ligand playing the role of proton donor. Hydrogen evolution also remains the main electrochemical process in the molybdate solutions. It is assumed that Mo(VI) reduction occurs with participation of atomic hydrogen, but not all molybdate is reduced to metallic state. Co(II) reduction in solutions containing Mg(II) occurs to a higher extent but the degree of Mo(VI) reduction depends on the Co(II) concentration: increase in the latter results in a decrease in the content of metallic molybdenum in coatings.  相似文献   

13.
The different courses of the interactions of cyclopentadienyl and arene derivatives of Group VI and VII transition metal carbonyl and transition complexes with Lewis acids, in solutions, have been studied by IR spectroscopy.The information of adducts involving the metal atom was observed for CpRe(CO)2L (L = CO, PR3) with SnCl4, SnBr4, TiCl4; AreneM(CO)3 (M = Cr, Mo, W) with SnCl4, TiCl4; and Ph3PC5H4M(CO)3 (M = Cr, Mo, W) with TiCl4 and AlCl3. Complexes CpM(CO)2NO and CpM(CO(NO)PPh3, depending on thier donor and acceptor nature, form adducts involving the oxygen atoms of CO or NO groups or the metal atom. CpCr(NO)2Cl reacts with Lewis acids via the chlorine atom. The relative basicity of the different sites in the complexes investigated is discussed.  相似文献   

14.
用聚合表面活性剂作增敏试剂分光光度测定钼和钨   总被引:2,自引:0,他引:2  
刘昆元  俞汝勤 《化学学报》1987,45(6):584-589
采用表面活性剂的分光光度分析法应用日趋广泛。这方面的研究工作虽极活跃,但较多工作限于已有经典表面活性剂的研究与应用,为分析化学的特定需要设计与合成新型表面活性剂的研究尚少。作者曾用环氧氯丙烷和长链烷基叔胺合成了以聚乙二醇为主链含有若干个带长链烷基的季氮支链的低聚合表面活性剂——聚(氧化丙烯)-α-十八烷基二甲基氯化铵(PPOSA)。实验表明,这类表面活性剂兼有阳离子和非离子表面活性剂的某些特性。本文  相似文献   

15.
Although the kinetics and mechanism of metal-mediated oxygen atom (oxo) transfer reactions have been examined in some detail, sulfur atom (sulfido) transfer reactions have not been similarly scrutinized. The reactions [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)AsQ --> [M(VI)Q(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)As (M = Mo, W; Q = O, S) with variable substituent X' have been investigated in acetonitrile in order to determine the relative rates of oxo versus sulfido transfer at constant structure (square pyramidal) of the atom acceptor and of atom transfer at constant structure of the atom donor and metal variability of the atom acceptor. All reactions exhibit second-order kinetics and entropies of activation (-25 to -45 eu) consistent with an associative transition state. At parity of atom acceptor, k(2)(S) (0.25-0.75 M(-1)s(-1)) > k(2)(O) (0.023-0.060 M(-1)s(-1)) with M = Mo and k(2)(S) (4.1-66.7 M(-1)s(-1)) > k(2)(O) (1.8-9.8 M(-1)s(-1)) with M = W. At constant atom donor and X', k(2)(W) > k(2)(Mo) with reactivity ratios k(2)(W)/k(2)(Mo) = 78-184 (Q = O) and 16-89 (Q = S). Rate constants refer to 298 K. At constant M and Q, rates increase in the order X' = Me less, similar OMe < H < Br < COMe < CN; increasing electron-withdrawing propensity accelerates reaction rates. The probable transition state involves significant Ph(3)AsQ...M bond-making (X' rate trend) and concomitant As-Q bond weakening (bond energy order As-O > As-S). Orders of oxo and sulfido donor ability of substrates and complexes are deduced on the basis of qualitative reactivity properties determined here and elsewhere. This work complements previous studies of the reaction systems [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-)/XO where the substrates are N-oxides and S-oxides and k(2)(W) > k(2)(Mo) at constant substrate also applies. The reaction order of substrates is Me(3)NO > (CH(2))(4)SO > Ph(3)AsS > Ph(3)AsO. This research provides the first quantitative information of metal-mediated sulfido transfer.  相似文献   

16.
We used density functional calculations to model dinitrogen reduction by a FeMo cofactor containing a central nitrogen atom and by a Mo‐based catalyst. Plausible intermediates, reaction pathways, and relative energetics in the enzymatic and catalytic reduction of N2 to ammonia at a single Mo center are explored. Calculations indicate that the binding of N2 to the Mo atom and the subsequent multiple proton–electron transfer to dinitrogen and its protonated species involved in the conversion of N2 are feasible energetically. In the reduction of N2 the Mo atom experiences a cycled oxidation state from Mo(IV) to Mo(VI) by nitrogenase and from Mo(III) to Mo(VI) by the molybdenum catalyst, respectively, tuning the gradual reduction of N2. Such a wide range of oxidation states exhibited by the Mo center is crucial for the gradual reduction process via successive proton–electron transfer. Present results suggest that the Mo atom in the N‐centered FeMo cofactor is a likely alternative active site for dinitrogen binding and reduction under mild conditions once there is an empty site available at the Mo site. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
A simple, selective and sensitive spectrophotometric method has been developed for the individual and simultaneous determination of Ti(IV) and Mo(VI) using resacetophenone p-hydroxybenzoylhydrazone (RAPHBH) in presence of Triton X-100, without any prior separation. Beer's law is obeyed between 0.13-1.2 microg mL-1 and 0.18-1.90 microg mL-1 concentration of Ti(IV) and Mo(VI) at 455 nm and 405 nm, respectively. The molar absorptivity and Sandell's sensitivity of the coloured complexes at pH 3.0 are 3.1x10(4) L mol-1 cm-1, 4.2x10(4) L mol-1 cm-1, and 1.6 ng cm-2, 2.3 ng cm-2 for Ti(IV) and Mo(VI), respectively. The stoichiometry of the complexes were found to be 1:2 and 1:1 (metal:ligand) for Ti(IV) and Mo(VI), respectively. These metal ions interfere with the determination of each other in zero-order spectrophotometry. The first derivative spectra of these complexes permitted a simultaneous determination of Ti(IV) and Mo(VI) at zero crossing wavelengths of 500.0 nm and 455.0 nm, respectively. The effect of foreign ions in the determination of Ti(IV) and Mo(VI) were investigated. The proposed method has been successfully applied for the determination of titanium and molybdenum in standard alloy steel, mineral and soil samples.  相似文献   

18.
19.
We report a series of calix[4]arene Mo(VI) dioxo complexes M2RC4MoO2 (M = alkali metal, R = H or Bu(t)) that were fully characterized by NMR, X-ray, IR, UV/vis, and elemental analysis. Molybdocalix[4]arene structures can be controlled via lower rim deprotonation, groups at para positions of calix[4]arene, and alkali metal counterions. Mono deprotonation at the lower rim leads to calix[4]arene Mo(VI) monooxo complexes RC4MoO (R = H, Bu(t), or allyl), and full deprotonation gives rise to calix[4]arene Mo(VI) dioxo complexes. Structural studies indicate that HC4 Mo(VI) dioxo complexes easily form polymeric structures via cation-pi interaction and coordination between different calixarene units. However, Bu(t)C4 Mo(VI) dioxo complexes tend to form dimers or tetramers due to steric hindrance of the tert-butyl groups at para positions in calixarene. The structures of the reduced side products A and C were determined by X-ray diffraction studies. The mechanism of RC4MoO formation from the reaction of calixarene monoanions with MoO2Cl2 appears to include the addition of a calixarene -OH group across a Mo=O bond.  相似文献   

20.
The kinetics of the reaction of Mo(VI)(S2C6H4)3 with organic phosphines to produce the anionic Mo(V) complex, Mo(V)(S2C6H4)3-, and phosphine oxide have been investigated. Reaction rates, monitored by UV-vis stopped-flow spectrophotometry, were studied in THF/H2O media as a function of the concentration of phosphine, molybdenum complex, pH, and water concentration. The reaction exhibits pH-dependent phosphine saturation kinetics and is first-order in complex concentration. The water concentration strongly enhances the reaction rate, which is consistent with the formation of Mo(VI)(S2C6H4)3(H2O) adduct as a crucial intermediate. The observed pH dependence of the reaction rate would arise from the distribution between acid and basic forms of this adduct. Apparently, the electrophilic attack by the phosphine at the oxygen requires the coordinated water to be in the unprotonated hydroxide form, Mo(VI)(S2C6H4)3(HO)-. This is followed by the concerted abstraction of 2e-, H+ by the Mo(VI) center to give Mo(IV)(S2C6H4)3(2-), H+, and the corresponding phosphine oxide. However, this Mo(IV) complex product is oxidized rapidly to Mo(V)(S2C6H4)3- via comproportionation with unreacted Mo(VI)(S2C6H4)3. The Mo(V) complex thus formed can be oxidized to the starting Mo(VI) complex upon admission of O2. Consequently, Mo(VI)(S2C6H4)3 is a catalyst for the autoxidation of phosphines in the presence of water. Additionally, there was a detectable variation in the reactivity for a series of tertiary phosphines. The rate of Mo(VI) complex reduction increases as does the phosphine basicity: (p-CH3C6H4)3P > (C6H5)3P > (p-ClC6H4)3P. Oxygen isotope tracing confirms that water rather than dioxygen is the source of the oxygen atom which is transferred to the phosphine. Such reactivity parallels oxidase activity of xanthine enzyme with phosphine as oxygen atom acceptor and Mo(VI)(S2C6H4)3 as electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号