首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article the implementation of anisotropic yield functions into finite element investigations of orthotropic sheets with planar anisotropy is discussed within a plane-stress context. Special attention is focused on the proper treatment of the orientation of the anisotropic axes during deformation into the finite-strain range. As an example problem the hydrostatic bulging of a membrane is considered in conjunction with a recently proposed anisotropic yield function. It is shown that the aspects of the plane-stress assumption, which do not come into consideration in isotropic analyses, can play an important role on the accuracy of the solution when the rotation of the orthotropic axes enters the computation directly due to the presence of material anisotropy. When the material anisotropy is considered and when the deformation of the workpiece is not limited to the plane of the undeformed sheet (such as cup drawing, hydrostatic bulging, etc.), the numerical experiments indicate that the only correct formulation is the one based on numerically imposing the requirement that for the plane-stress application, the in-plane material axes have to remain in the plane of the sheet during the deformation.  相似文献   

2.
Many finite element (FEM) formulations have been based on stress potentials defined in the stress field. Nevertheless, there are formulations where potentials defined in the strain-rate field are especially convenient to implement. These include rigid-plastic formulations based on minimum plastic work paths, which can be used for process design as well as for process analysis. Based on a strain-rate potential recently proposed for anisotropic materials exhibiting orthotropic symmetry, a formulation for sheet forming process analysis has been developed using a Cartesian coordinate system in this paper. An efficient formulation to account for material rotation is also included. Earing predictions made for a cup drawing test of a 2090-T3 aluminum-lithium alloy sheet showed good agreement with experiments. However, some discrepancies were observed between predicted and experimental thickness strain and cup height directional trends. The cause of the discrepancies was discussed using a simple analysis based on Lankford (or plastic strain ratio, r) values.  相似文献   

3.
This paper investigates the capabilities of several non-quadratic polynomial yield functions to model the plastic anisotropy of orthotropic sheet metal (plane stress). Fourth, sixth and eighth-order homogeneous polynomials are considered. For the computation of the coefficients of the fourth-order polynomial an improved set of analytic formulas is proposed. For sixth and eighth-order polynomials the identification uses optimization. Simple constraints on the optimization process are shown to lead to real-valued convex functions. A general method to extend the above plane stress criteria to full 3D stress states is also suggested. Besides their simplicity in formulation, it is found that polynomial yield functions are capable to model a wide range of anisotropic plastic properties (e.g., the Numisheet’93 mild steel, AA2008-T4, AA2090-T3). The yield functions have then been implemented into a commercial finite element code as constitutive subroutines. The deep drawing of square (Numisheet’93) and cylindrical (AA2090-T3) cups have been simulated. In both cases excellent agreement with experimental data is obtained. In particular, it is shown that non-quadratic polynomial yield functions can simulate cylindrical cups with six or eight ears. We close with a discussion on earing and further examples.  相似文献   

4.
Yielding of anisotropic materials can be characterized by yield criteria which are scalar-valued functions of the stress tensor and of material tensors, for instance, of rank two or four, characterizing the anisotropic properties of the material. Because of the requirement of invariance, a yield criterion can be expressed as a single-valued function of the integrity basis. In finding an integrity basis involving the stress tensor and material tensors, the constitutive equations are first formulated based on the tensor function theory. Since the plastic work characterizes the yield process, we read from this scalar expression the essential invariants to formulate a yield criterion. Some examples for practical use are discussed in detail.  相似文献   

5.
Sheet metal forming processes often involve complex loading sequences. To improve the prediction of some undesirable phenomena, such as springback, physical behavior models should be considered. This paper investigates springback behavior predicted by advanced elastoplastic hardening models which combine isotropic and kinematic hardening and take strain-path changes into account. A dislocation-based microstructural hardening model formulated from physical observations and the more classical cyclic model of Chaboche have been considered in this work. Numerical implementation was carried out in the ABAQUS software using a return mapping algorithm with a combined backward Euler and semi-analytical integration scheme of the constitutive equations. The capability of each model to reproduce transient hardening phenomena at abrupt strain-path changes has been shown via simulations of sequential rheological tests. A springback analysis of strip drawing tests was performed in order to emphasize the impact of several influential parameters, namely: process, numerical and behavior parameters. The effect of the two hardening models with respect to the process parameters has been specifically highlighted.  相似文献   

6.
7.
The forming limit diagram (FLD) is a useful concept for characterizing the formability of sheet metal. The ability to accurately predict the FLD for a given material has been shown to depend on the shape of the selected yield function. In addition, both experimental and numerical results have shown that the level of the FLD is strongly strain path dependent. In this work, a combination of Marciniak–Kuczynski (M–K) analysis and a general anisotropic yield criterion developed by Karafillis and Boyce (Karafillis, A.P., Boyce, M.C., 1993. A general anisotropic yield criterion using bounds and transformation weighting tensor. J. Mech. Phys. Solids 41, 1859) is used to predict localized thinning of sheet metal alloys for linear and nonlinear strain paths. A new method for determining the constants in the yield criterion is proposed. The optimal values are obtained by fitting the initial yield stresses and calculated FLD under linear strain paths with the experimental measurement. Using this approach, accurate yield functions can be defined for both Al2008-T4 and Al6111-T4. Comparisons of computed FLDs with the experimental data of Graf and Hosford (Graf, A., Hosford, W.F., 1993b. Effect of changing strain paths on forming limit diagrams of Al 2008-T4. Metall. Trans. A. 24, 2503; Graf, A., Hosford, W.F., 1994. The influence of strain path changes on forming limit diagrams of Al 6111-T4. Int. J. Mech. Sci. 36, 897) show good agreements.  相似文献   

8.
各向异性本构关系在板料成形数值模拟中的应用   总被引:7,自引:0,他引:7  
对几种能表达面内各向异性的屈服准则Hill、Barlat-Lian、Barlat进行了比较。以弹性变形服从各向同性广义虎克定律的情况下,给出了基于张量算法推导的弹塑性本构关系的一般表达式,并由此导出了相应屈服准则的弹塑性本构关系的显式表达。借助ABAQUS软件本构模块用户子程序接口,分别实现了这些屈服准则在ABAQUS的嵌入。以模拟方形盒的拉延过程为例,分析了不同的屈服准则在板料成形过程数值模拟中的应用。模拟结果表明,基于弹塑性本构关系一般表达所列出的相应屈服准则的显式表达式是正确的;在采用壳元来模拟板料成形时,采用Barlat准则的模拟结果和采用Barlat-Lian准则的结果差别不大。  相似文献   

9.
Spitzig and Richmond [Acta Metall. 32 (1984) 457] proposed that plastic yielding of both polycrystalline and single crystals of steel and aluminum alloys shows a significant sensitivity to hydrostatic pressure. They further showed that under the associated flow rule, this pressure sensitivity leads to a plastic dilatancy, i.e. permanent volume change, that is at least an order of magnitude larger than observed. Indeed, the plastic dilatancy for most materials is on the order of the measurement error and must be zero in the absence of phase change and significant void nucleation during plastic deformation. A non-associated flow rule based on a pressure sensitive yield criterion with isotropic hardening is proposed in this paper that is consistent with the Spitzig and Richmond data and analysis. The significance of this work is that the model distorts the shape of the yield function in tension and compression, fully accounting for the strength differential effect (SDE). This capability is important because the SDE is sometimes described through kinematic hardening models using only pressure insensitive yield criteria.  相似文献   

10.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   

11.
An improved model of material behavior is proposed that shows good agreement with experimental data for both yield and plastic strain ratios in uniaxial, equi-biaxial, and plane-strain tension under proportional loading for steel, aluminum and possibly other alloys. This model is based on a non-associated flow rule in which the plastic potential and yield surface functions are defined by quadratic functions of the stress tensor. The plastic potential aspect of the model is identical to that proposed by Hill for a quadratic anisotropic plastic potential defined in terms of measured r values. The new model differs in that the yield surface, although also defined by a quadratic function of the stress tensor, is defined independently of the plastic potential in terms of measured yield stresses. The model is developed and implemented in an FEM code that is based on a convected coordinate system. Since the associated flow rule, which assumes equivalency between the plastic potential and yield functions, is commonly accepted as a valid law in the theory of plastic deformation of most metals, the arguments for the associated flow rule are also discussed.  相似文献   

12.
覆盖件冲压仿真计算模型中网格密度分布的合理性与网格单元形态的优劣,对仿真结果的准确性有很大的影响.提出了一种改进的全四边形网格细分方法,使网格的密度分布适于覆盖件冲压分析计算要求,可保证细分后网格的协调性,并将算法推广以处理非结构化四边形网格和三角形四边形混合网格的细分.提出的网格细分策略,有助于提高细分后网格的质量.提出了适用于细分后四边形网格和非结构四边形网格的拓扑形态优化操作,可有效的提高网格模型的形态质量.  相似文献   

13.
金属板料成形的快速有限元分析   总被引:3,自引:0,他引:3  
研究了基于形变理论的金属板形成快速有限元分析的方法-反向方法,并实现了计算程序。通过实例的计算结果和实验以及增量方法进行了比较,表明此方法能够定性地分析成形工件中的变形情况。由于计算速度快、建立分析模模型简单,此方法可用于设计早期估计零件的可成形性,以及部分工艺参数对形的影响。  相似文献   

14.
15.
16.
Successful numerical simulations of forming operations require robust and accurate tool-workpiece interface friction models. In this paper we extend the rate-independent, isotropic, isothermal interface friction model proposed by Anand (Anand, L., 1993. A constitutive model for interface friction. Computational Mechanics 12, 197–213) to a rate-dependent formulation. Material parameters in the friction model are determined for lubricated interfaces between Al6111-T4 sheet and D2 tool steel. The lubricants used are MP404 and boric acid; the MP404 lubricant is currently used in industry, whereas boric acid has recently been proposed as a solid-film lubricant for sheet forming by Erdemir (Erdemir, A., 1991. Tribological properties of boric acid and boric acid-forming surfaces. Part i: crystal chemistry and mechanisms of self-lubrication of boric acid. Lubrication Engineering 47, 168–173). The interface friction model is implemented in the finite element code ABAQUS/Explicit (ABAQUS Reference Manual., 1999. Providence, RI), and the finite element program is used to simulate two sheet forming operations: axisymmetric cup-drawing and square pan-drawing. The predictions from the finite element simulation are shown to be in very good agreement with experimental results.  相似文献   

17.
An experimental investigation was conducted on the initiation and growth of wrinkling due to nonuniform tension using the Yoshida buckling test. The initiation of wrinkling was detected by strain gages mounted on both surfaces of the samples in the loading and transverse directions. The bifurcation of aluminum auto body sheets appeared to be smooth and much less abrupt than that observed in a steel sheet. A special fixture was designed to, perhaps for the first time, continuously measure the in situ growth of the buckle heights so that the rates of buckle growth were monitored as functions of strain and stress in the loading direction. In contrast to what is commonly believed, it was found that the buckle height is not predominantly determined by the material yield strength, and lower averager value does not increase the rate of buckle growth. Crystallographic texture components and pole figures of the test materials were also measured, and the relationship of plastic anisotropy with wrinkling behavior was investigated by experiments with specimens aligned in the rolling direction, the transverse direction and 45-deg to the rolling direction of the sheet materials.  相似文献   

18.
The effect of changing strain paths on the forming limit stresses of sheet metals is investigated using the Marciniak–Kuczyński model and a phenomenological plasticity model with non-normality effects [Kuroda, M., Tvergaard, V., 2001. A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity. J. Mech. Phys. Solids 49, 1239–1263]. Forming limits are simulated for linear stress paths and two types of combined loading: a combined loading consisting of two linear stress paths in which unloading is included between the first and second loadings (combined loading A), and combined loading in which the strain path is abruptly changed without unloading (combined loading B). The forming limit stresses calculated for combined loading A agree well with those calculated for the linear stress paths, while the forming limit curves in strain space depend strongly on the strain paths. The forming limit stresses calculated for the combined loading B do not, however, coincide with those calculated for the linear stress paths. The strain-path dependence of the forming limit stress is discussed in detail by observing the strain localization process.  相似文献   

19.
Discrete meshes cause stepwise propagation of the contact nodes of a sheet despite the fact that the contact region in the actual forming process is altered very smoothly. This can cause problems of convergence and accuracy in contact-sensitive processes, such as a bending process. In this study, a scheme for a continuous contact treatment is proposed in order to consider the more realistic behavior of the contact phenomena during the forming process. For verification of the proposed method, the contact pressures and forming load are evaluated during the compression forming of a tube. The analysis of a hemispherical dome formed without a blank holder is also presented in order to investigate the effects of the proposed algorithm. The results show that the precise deformation mode is predicted by the utilization of the proposed method.  相似文献   

20.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号