首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the capabilities of several non-quadratic polynomial yield functions to model the plastic anisotropy of orthotropic sheet metal (plane stress). Fourth, sixth and eighth-order homogeneous polynomials are considered. For the computation of the coefficients of the fourth-order polynomial an improved set of analytic formulas is proposed. For sixth and eighth-order polynomials the identification uses optimization. Simple constraints on the optimization process are shown to lead to real-valued convex functions. A general method to extend the above plane stress criteria to full 3D stress states is also suggested. Besides their simplicity in formulation, it is found that polynomial yield functions are capable to model a wide range of anisotropic plastic properties (e.g., the Numisheet’93 mild steel, AA2008-T4, AA2090-T3). The yield functions have then been implemented into a commercial finite element code as constitutive subroutines. The deep drawing of square (Numisheet’93) and cylindrical (AA2090-T3) cups have been simulated. In both cases excellent agreement with experimental data is obtained. In particular, it is shown that non-quadratic polynomial yield functions can simulate cylindrical cups with six or eight ears. We close with a discussion on earing and further examples.  相似文献   

2.
Sheet metal forming processes often involve complex loading sequences. To improve the prediction of some undesirable phenomena, such as springback, physical behavior models should be considered. This paper investigates springback behavior predicted by advanced elastoplastic hardening models which combine isotropic and kinematic hardening and take strain-path changes into account. A dislocation-based microstructural hardening model formulated from physical observations and the more classical cyclic model of Chaboche have been considered in this work. Numerical implementation was carried out in the ABAQUS software using a return mapping algorithm with a combined backward Euler and semi-analytical integration scheme of the constitutive equations. The capability of each model to reproduce transient hardening phenomena at abrupt strain-path changes has been shown via simulations of sequential rheological tests. A springback analysis of strip drawing tests was performed in order to emphasize the impact of several influential parameters, namely: process, numerical and behavior parameters. The effect of the two hardening models with respect to the process parameters has been specifically highlighted.  相似文献   

3.
4.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   

5.
6.
Discrete meshes cause stepwise propagation of the contact nodes of a sheet despite the fact that the contact region in the actual forming process is altered very smoothly. This can cause problems of convergence and accuracy in contact-sensitive processes, such as a bending process. In this study, a scheme for a continuous contact treatment is proposed in order to consider the more realistic behavior of the contact phenomena during the forming process. For verification of the proposed method, the contact pressures and forming load are evaluated during the compression forming of a tube. The analysis of a hemispherical dome formed without a blank holder is also presented in order to investigate the effects of the proposed algorithm. The results show that the precise deformation mode is predicted by the utilization of the proposed method.  相似文献   

7.
An experimental investigation was conducted on the initiation and growth of wrinkling due to nonuniform tension using the Yoshida buckling test. The initiation of wrinkling was detected by strain gages mounted on both surfaces of the samples in the loading and transverse directions. The bifurcation of aluminum auto body sheets appeared to be smooth and much less abrupt than that observed in a steel sheet. A special fixture was designed to, perhaps for the first time, continuously measure the in situ growth of the buckle heights so that the rates of buckle growth were monitored as functions of strain and stress in the loading direction. In contrast to what is commonly believed, it was found that the buckle height is not predominantly determined by the material yield strength, and lower averager value does not increase the rate of buckle growth. Crystallographic texture components and pole figures of the test materials were also measured, and the relationship of plastic anisotropy with wrinkling behavior was investigated by experiments with specimens aligned in the rolling direction, the transverse direction and 45-deg to the rolling direction of the sheet materials.  相似文献   

8.
The effect of changing strain paths on the forming limit stresses of sheet metals is investigated using the Marciniak–Kuczyński model and a phenomenological plasticity model with non-normality effects [Kuroda, M., Tvergaard, V., 2001. A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity. J. Mech. Phys. Solids 49, 1239–1263]. Forming limits are simulated for linear stress paths and two types of combined loading: a combined loading consisting of two linear stress paths in which unloading is included between the first and second loadings (combined loading A), and combined loading in which the strain path is abruptly changed without unloading (combined loading B). The forming limit stresses calculated for combined loading A agree well with those calculated for the linear stress paths, while the forming limit curves in strain space depend strongly on the strain paths. The forming limit stresses calculated for the combined loading B do not, however, coincide with those calculated for the linear stress paths. The strain-path dependence of the forming limit stress is discussed in detail by observing the strain localization process.  相似文献   

9.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

10.
The paper discusses the derivation and the numerical implementation of a finite strain material model for plastic anisotropy and nonlinear kinematic and isotropic hardening. The model is derived from a thermodynamic framework and is based on the multiplicative split of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong–Frederick kinematic hardening. Introducing the so-called structure tensors as additional tensor-valued arguments, plastic anisotropy can be modelled by representing the yield surface and the plastic flow rule as functions of the structure tensors. The evolution equations are integrated by a new form of the exponential map that preserves plastic incompressibility and uses the spectral decomposition to evaluate the exponential tensor functions in closed form. Finally, the applicability of the model is demonstrated by means of simulations of several deep drawing processes and comparisons with experiments.  相似文献   

11.
12.
An approximate lower bound damage-based yield criterion is developed for isotropic porous ductile sheet metals. The matrix of the sheet metals is assumed to be elastic-perfectly plastic and obey the von Mises yield criterion with periodically distributed voids. Gurson’s unit-cell model is simplified to characterize the sheet metals. To accommodate biaxial loading, an approach of stress superposition is adopted for the stress analysis. Numerical results were calculated and compared to Gurson’s extended yield criterion and experimental results.  相似文献   

13.
In the present paper, a finite element formulation based on non-associated plasticity is developed. In the constitutive formulation, isotropic hardening is assumed and an evolution equation for the hardening parameter consistent with the principle of plastic work equivalence is introduced. The yield function and plastic potential function are considered as two different functions with functional form as the yield function of Hill [Hill, R., 1948. Theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. A 193, 281–297] or Karafillis–Boyce associated model [Karafillis, A.P. Boyce, M., 1993. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41, 1859–1886]. Algorithmic formulations of constitutive models that utilize associated or non-associated flow rule coupled with Hill or Karafillis–Boyce stress functions are derived by application of implicit return mapping procedure. Capabilities in predicting planar anisotropy of the Hill and Karafillis–Boyce stress functions are investigated considering material data of Al2008-T4 and Al2090-T3 sheet samples. The accuracy of the derived stress integration procedures is investigated by calculating iso-error maps.  相似文献   

14.
Computer vision systems are employed to determine the major and minor lengths of deformed elliptic grids while determining a sheet metal's workability. The existing method identifies the ellipse using the least squares analysis. It suffers two drawbacks: assumptions in direct conflict with the observed real-world processes and an undesirable property of orientation dependence. For the remedy, this paper presents a new method that, in addition to achieving the desired property of orientation invariance, discards assumptions that conflict with real-world processes. The proposed method is implemented and tested using simulated and real-world data. Results are reported and compared with those obtained by the existing method.  相似文献   

15.
The hardening model proposed by Z. Mróz based on the uniaxial fatigue behavior of many metals is adopted to derive an incremental constitutive equation for general three-dimensional problems. This constitutive law is then employed in the analysis of metal forming problems to assess the influence of loading cycles, of the types involved in standard forming processes, on the ultimate formability of sheet metals. The predicted forming limit curves differ quantitatively from results obtained via an isotropie hardening model and differ qualitatively from those obtained via a kinematic model. Also investigated are the effects of such loading cycles on material response to simple tensile loading, which is often used to characterize a material. Significant differences between the present model and the other two models considered are observed in such characterizers of simple tensile behavior as the stress-strain curve, the anisotropy parameter and the uniform elongation. These differences suggest a rather simple experiment to identify the proper material model to be used in analyses of problems which involve loading cycles. Comparisons with some experimental results reveal that the employment of an anisotropic hardening model, such as the generalized Mróz model derived herein, is indeed crucial in accurately predicting material response to complicated loading histories.  相似文献   

16.
The initial yield surface of 2D lattice materials is investigated under biaxial loading using finite element analyses as well as by analytical means. The sensitivity of initial yield surface to the dominant deformation mode is explored by using both low- and high-connectivity topologies whose dominant deformation mode is either local bending or strut stretching, respectively. The effect of microstructural irregularity on the initial yield surface is also examined for both topologies. A pressure-dependent anisotropic yield criterion, which is based on total elastic strain energy density, is proposed for 2D lattice structures, which can be easily extended for application to 3D cellular solids. Proposed criterion uses elastic constants and yield strengths under uniaxial loading, and does not rely on any arbitrary parameter. The analytical framework developed allows the introduction of new scalar measures of characteristic stresses and strains that are capable of representing the elastic response of anisotropic materials with a single elastic master line under multiaxial loading.  相似文献   

17.
A recently proposed reduced enhanced solid-shell (RESS) element [Alves de Sousa, R.J., Cardoso, R.P.R., Fontes Valente, R.A., Yoon, J.W., Grácio, J.J., Natal Jorge, R.M., 2005. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I – Geometrically Linear Applications. International Journal for Numerical Methods in Engineering 62, 952–977; Alves de Sousa, R.J., Cardoso, R.P.R., Fontes Valente, R.A., Yoon, J.W., Grácio, J.J., Natal Jorge, R.M., 2006. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part II – Nonlinear Applications. International Journal for Numerical Methods in Engineering, 67, 160–188.] is based on the enhanced assumed strain (EAS) method with a one-point quadrature numerical integration scheme. In this work, the RESS element is applied to large-deformation elasto-plastic thin-shell applications, including contact and plastic anisotropy. One of the main advantages of the RESS is its minimum number of enhancing parameters (only one), which when associated with an in-plane reduced integration scheme, circumvents efficiently well-known locking phenomena, leading to a computationally efficient performance when compared to conventional 3D solid elements. It is also worth noting that the element accounts for an arbitrary number of integration points through thickness direction within a single element layer. This capability has proven to be efficient, for instance, for accurately describing springback phenomenon in sheet forming simulations. A physical stabilization procedure is employed in order to correct the element’s rank deficiency. A general elasto-plastic model is also incorporated for the constitutive modelling of sheet forming operations with plastic anisotropy. Several examples including contact, anisotropic plasticity and springback effects are carried out and the results are compared with experimental data.  相似文献   

18.
In this paper, yield functions describing the anisotropic behavior of textured metals are proposed. These yield functions are extensions to orthotropy of the isotropic yield function proposed by Cazacu et al. (Cazacu, O., Plunkett, B., Barlat, F., 2006. Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plasticity 22, 1171–1194). Anisotropy is introduced using linear transformations of the stress deviator. It is shown that the proposed anisotropic yield functions represent with great accuracy both the tensile and compressive anisotropy in yield stresses and r-values of materials with hcp crystal structure and of metal sheets with cubic crystal structure. Furthermore, it is demonstrated that the proposed formulations can describe very accurately the anisotropic behavior of metal sheets whose tensile and compressive stresses are equal.  相似文献   

19.
In this work, non-associative finite strain anisotropic elastoplasticity fully coupled with ductile damage is considered using a thermodynamically consistent framework. First, the kinematics of large strain based on multiplicative decomposition of the total transformation gradient using the rotating frame formulation, is recalled and different objective derivatives defined. By using different anisotropic equivalent stresses (quadratic and non-quadratic) in yield function and in plastic potential, the evolution equations for all the dissipative phenomena are deduced from the generalized normality rule applied to the plastic potential while the consistency condition is still applied to the yield function. The effect of the objective derivatives and the equivalent stresses (quadratic or non-quadratic) on the plastic flow anisotropy and the hardening evolution with damage is considered. Numerical aspects mainly related to the time integration of the fully coupled constitutive equations are discussed. Applications are made to the AISI 304 sheet metal by considering different loading paths as tensile, shear, plane tensile and bulge tests. For each loading path the effect of the rotating frame, the equivalent stress (quadratic or non-quadratic) and the normality rule (with respect to yield function or to the plastic potential) are discussed on the light of some available experimental results.  相似文献   

20.
A quadratic yield function which can describe the anisotropic behaviors of sheet metals with tension/compression symmetry and asymmetry is proposed.Five mechanical properties are adopted to determine the coefficients of each part of the yield function.For particular cases,the proposed yield function can be simplified to Mises or Hill’s quadratic yield function.The anisotropic mechanical properties are expressed by defining an angle between the current normalized principal stress space and the reference direction with the assumption of orthotropic anisotropy.The accuracy of the proposed yield function in describing the anisotropy under tension and compression is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号