首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A new approach is proposed to investigate the propagation of a plane compressional wave in matrix composite materials with high volume concentrations of particles. The theory of quasicrystalline approximation and Waterman’s T matrix formalism are employed to treat the multiple scattering resulting from the particles in composites. The addition theorem for spherical Bessel functions is used to accomplish the translation between different coordinate systems. The Percus–Yevick correlation function widely applied in the molecular theory of liquids is employed to analyze the interaction of the densely distributed particles. The analytical expression for the Percus–Yevick correlation function is also given. The closed form solution for the effective propagation constant is obtained in the low frequency limit. Only numerical solutions are obtained at higher frequencies. Numerical examples show that the phase velocities in the composite materials with low volume concentration are in good agreement with those in previous literatures. The effects of the incident wave number, the volume fraction and the material properties of the particles and matrix on the phase velocity are also examined.  相似文献   

2.
We calculate the effective properties of a magnetostrictive composite in the dilute limit. The composite consists of well separated identical ellipsoidal particles of magnetostrictive material, surrounded by an elastic matrix. The free energy of the magnetostrictive particles is computed using the constrained theory of DeSimone and James [2002. A constrained theory of magnetoelasticity with applications to magnetic shape memory materials. J. Mech. Phys. Solids 50, 283-320], where application of an external field causes rearrangement of variants rather than rotation of the magnetization or elastic strain in a variant. The free energy of the composite has an elastic energy term associated with the deformation of the surrounding matrix and demagnetization terms. By using results from the constrained theory and from the Eshelby inclusion problem in linear elasticity, we show that the energy minimization problem for the composite can be cast as a quadratic programming problem. The solution of the quadratic programming problem yields the effective properties of Ni2MnGa and Terfenol-D composite systems. Numerical results show that the average strain of the composite depends strongly on the particle shape, the applied stress, and the elastic modulus of the matrix.  相似文献   

3.
Since the shear waves involved in in-situ and laboratory measurement methods vary significantly in terms of the frequency range, it is necessary to consider the effects of frequency on the shear wave velocity. In this study, sand particles are assumed to be spherical solid particles with an equal radius and identical material properties, and sand skeletons are regarded as granular aggregations generated through the random packing of sand particles. It is also assumed that the sand particles only undergo elastic deformation during shear wave propagation. Based on a spherical particle model, a formula is obtained for calculating the shear wave velocity in sand, with the shear wave frequency as an extra influencing parameter. The quantitative calculations demonstrate that the shear wave velocity decreases with an increase of sand porosity, and accelerates with increases of vertical effective stress and elastic modulus of the sand particles. It is also indicated that both the particle density and Poisson’s ratio of the sand particles have negligible effects on the shear wave propagation. The frequency dispersion characteristics of shear wave propagating in sand are also discussed. Moreover, the critical frequency is defined and its analytical expression is derived. The calculation results obtained using the proposed equations agree well with the in-situ measurement results and bender element test data.  相似文献   

4.
修晨曦  楚锡华 《力学学报》2018,50(2):315-328
基于颗粒材料冲击与波动响应特性的调控波传播行为的超材料设计受到广泛关注,设计这类材料需要对颗粒材料的波传播机制及调控机理有深入认识. 波在颗粒材料中传播的频散现象及频率带隙等行为与材料的非均匀性密切相关,通常讨论频散现象是基于弹性理论框架建立微结构连续体或高阶梯度连续体等广义连续体模型来进行. 本研究基于细观力学给出了一个颗粒材料的微形态连续体模型. 在该模型中,考虑了颗粒的平动和转动,且颗粒间的相对运动分解为两部分:即宏观平均运动和细观真实运动. 基于此分解,提出了一个完备的变形模式,得到了对应于不同应变及颗粒间运动的宏细观本构关系. 结合宏观变形能的细观变形能求和表达式,获得了基于细观量表示的宏观本构模量. 应用所建议模型考察了波在弹性颗粒介质的传播行为,给出了不同形式的波的频散曲线,结果显示此模型具有预测频率带隙的能力.   相似文献   

5.
Summary The propagation of elastic waves (both longitudinal and transverse) through polyurethane rubbers filled with different amounts of sodium chloride particles was studied at 0.8 MHz and 5 MHz. At a constant filler concentration (∼10% by volume), the velocity of these waves appeared to be independent of filler size. On the other hand, both velocities were found to increase with filler content. From the wave velocities, the effective modulus for longitudinal waves, L, bulk modulus, K, and shear modulus, G, were calculated according to the relations for a homogeneous isotropic material. All three moduli appear to be monotonically increasing functions of filler content, c, over the whole experimentally accessible temperature range (−80°C to +80°C for L and K; −80°C to about −30°C for G) and they, moreover, reflect the glass-rubber transition of the binder. Poissons ratio, μ, was found to decrease with increasing filler content and shows a rise at about −30°C as a result of the approach of the glass-rubber transition. The attenuation of the elastic waves was also measured in the temperature ranges mentioned. For filler particles beyond a critical size both tan δL and tan δG in the hard region are independent of the filler content within the accuracy of the measurements. The critical size depends on the type of wave and on its frequency. In the rubbery region, however, tan δL increases with particle size (at a constant content of 10% by volume) and even shows an enhancement with the smallest particles (1–5 μ) at 0.8 MHz. Moreover, it is found that for the same filler size tan δL increases with filler content. In some cases an anomalous damping behaviour was found, such that in the rubbery region the attenuation rises indefinitely with temperature. For filler particles larger than the above-mentioned critical size, tan δG and tan δL increase in the hard region as well. Finally, the experimental results are compared with existing theories on the elastic properties of and wave propagation through composite media.  相似文献   

6.
The work is dedicated to the problem of plane monochromatic shear wave propagation through elastic matrix composite materials with a homogeneous random set of spherical inclusions. The effective field method (EFM) and quasi-crystalline approximation are used for the calculation of phase velocity and attenuation factor of the mean wave field propagating through the composite. The version of the method developed in the work allows us to obtain the dispersion equation for the wave vector of the mean wave field that serves for all frequencies of the incident field, properties and volume concentrations of the inclusions. The long- and short-wave asymptotic solutions of the dispersion equation are found in closed analytical forms. Numerical solutions of this equation are constructed in a wide region of frequencies that covers the long-, middle- and short-wave regions of the propagating waves. The phase velocities and attenuation factors of the mean wave field in the composites are analyzed for various elastic properties, density and volume concentrations of the inclusions. Comparisons of the predictions of the method with some numerical computation of the effective parameters of matrix composites are presented; possible errors in predictions of the velocities and attenuation factors of the mean wave field in the composites are indicated and discussed.  相似文献   

7.
Surface-bonded piezoelectric actuators can be used to generate elastic waves for monitoring damages of composite materials. This paper provides an analytical and numerical study to simulate wave propagation in an anisotropic medium induced by surface-bonded piezocermic actuators under high-frequency electric loads. Based on a one-dimensional actuator model, the dynamic load transfer between a piezoceramic actuator and an anisotropic elastic medium under in-plane mechanical and electrical loading is obtained. The wave propagation induced by the surface-bonded actuator is also studied in detail by using Fourier transform technique and solving the resulting integral equations in terms of the interfacial shear stress. Typical examples are provided to show effects of the geometry, the material combination, the loading frequency and the material anisotropy of the composite upon the load transfer and the resulting wave propagation.  相似文献   

8.
From the work of R. Hill on constitutive macro-variables it is known that for an inhomogeneous elastic solid under finite strain an overall elastic constitutive law may be defined. In particular, the volume average of the strain energy of the solid is a function only of the volume-averaged deformation gradient. In view of the importance of this result it is re-derived in this paper as a prelude to a discussion of composite materials. A composite material consisting of a dilute suspension of initially spherical inclusions embedded in a matrix of different material is considered. For second-order isotropic elasticity theory an expression for the overall bulk modulus of the composite material is obtained in terms of the moduli of the constituents. When the inclusions are vacuous a known result for the bulk modulus of porous materials is recovered. In certain situations the strengthening/ weakening effects of the inclusions are less pronounced in the second-order theory than in the linear theory.  相似文献   

9.
本文基于炭黑填充橡胶复合材料具有周期性细观结构的假设,采用一种新的、改进的随机序列吸附算法建立了三维多球颗粒随机分布式代表性体积单元,并通过细观力学有限元方法对炭黑颗粒填充橡胶复合材料的力学行为进行了模拟仿真。研究结果表明:采用改进的随机序列吸附算法所建立的模型更加便于有限元离散化;模拟中周期性边界条件的约束,使其更加符合实际约束的真实情况;炭黑填充橡胶复合材料的有效模量明显高于未填充橡胶材料,并随着炭黑颗粒所占体积分数的增加而增大;通过比较发现,本文提出的多球颗粒随机分布式三维数值模型对复合材料的应力-应变行为和有效弹性模量的预测结果与实验结果吻合良好,证实了该模型能够用于炭黑颗粒增强橡胶基复合材料有效性能的模拟分析。  相似文献   

10.
史杰  王砚 《应用力学学报》2020,(2):566-572,I0007
基于一维颗粒链中产生的高度非线性孤立波,研究孤立波与半无限复合材料体的耦合作用。根据赫兹定律推导了一维颗粒链中颗粒间相互作用的运动微分方程,建立了颗粒链与半无限复合材料体的接触模型。对于颗粒与复合材料的接触,采用已有文献中修正后的赫兹定律,研究了高度非线性孤立波与半无限复合材料体的耦合力学作用机理,推导了颗粒链与半无限复合材料体的相互耦合运动微分方程组,通过数值计算,得到了各颗粒的内力、速度、位移曲线。分析了材料属性对回弹孤立波出现的时间、幅值的影响。结果表明:随着纤维方向弹性模量的增大,次级回弹波出现的时间和波幅都逐渐增大,随着垂直纤维方向弹性模量的增大,次级回弹波出现的时间先减小后增大,次级回弹波的幅值逐渐减小直至消失。  相似文献   

11.
The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed. Victor G. Oshmyan deceased.  相似文献   

12.
冲击荷载作用下混凝土材料的细观本构模型   总被引:8,自引:0,他引:8  
将混凝土材料看成是水泥砂浆基体和粗骨料颗粒组成的2相复合材料,假设水泥砂浆基体和粗骨料颗粒均为弹性、均匀、各向同性的,粗骨料颗粒为球形。基于Mori-Tanaka理论和Eshelby 等效夹杂理论推出了混凝土材料弹性模量的计算公式。在Horii和Nemat-Nasser提出的脆性材料在双轴向压应力作用下破坏的滑移裂纹模型基础上,运用细观力学方法推导了微裂纹对材料弹性模量的弱化作用以及微裂纹的损伤演化方程。建立了混凝土材料在冲击荷载作用下的一维动态本构模型,模拟曲线与实验曲线符合良好,因而可以用该模型模拟混凝土材料在冲击荷载下的动态特性。  相似文献   

13.
《Wave Motion》1987,9(2):141-156
A continuum theory for transient wave propagation in three-dimensional composite materials is given. The derived model provides a set of governing equations for the prediction of dynamic response of elastic composites to impulsive loadings. Pulse propagation normal to the direction of layering in periodically bilaminated media, and normal to the fiber direction in unidirectional long-fiber composites are obtained as special cases. The dynamic response of the composite is determined solely from the materials properties of the constituents (assumed in general to be orthotropic) and their geometrical dimensions. The predicted propagating transient waves are checked with exact solutions for impacted laminated composites, and with measured data for a fiber-reinforced material. Applications are given for pulse propagation in particulate composites and in tri-othogonally fiber-reinforced materials.  相似文献   

14.
A powerful complex transfer matrix approach to wave propagation perpendicular to the layering of a composite of periodic and disordered structure is worked out showing propagating and stopping bands of time-harmonic waves and the singular cases of standing waves. A state ratio of left- and right-going plane waves is defined and interpreted geometrically in the complex plane in terms of fixed points and flow lines. For numerical considerations and extension of the approach to higher dimensional problems a continued fraction expansion of the state ratio mapping is presented. Impurity modes of wave propagation in composites with widely spaced impurity cells of different elastic materials are discussed. Stopping bands in the frequency spectrum of global waves in fully disordered composites are found to exist in the range of frequencies corresponding to common gaps in the spectrum of cnstituent regular periodic composites which are constructed from the cells of the disordered system. For those frequencies, waves propagate only a (short) finite distance and are therefore strongly localized modes in a composite of fairly large extent.  相似文献   

15.
Plane waves in linear elastic materials with voids   总被引:2,自引:0,他引:2  
The behavior of plane harmonic waves in a linear elastic material with voids is analyzed. There are two dilational waves in this theory, one is predominantly the dilational wave of classical linear elasticity and the other is predominantly a wave carrying a change in the void volume fraction. Both waves are found to attenuate in their direction of propagation, to be dispersive and dissipative. At large frequencies the predominantly elastic wave propagates with the classical elastic dilational wave speed, but at low frequencies it propagates at a speed less than the classical speed. It makes a smooth but relatively distinct transition between these wave speeds in a relatively narrow range of frequency, the same range of frequency in which the specific loss has a relatively sharp peak. Dispersion curves and graphs of specific loss are given for four particular, but hypothetical, materials, corresponding to four cases of the solution.  相似文献   

16.
五零能模式材料是一种新型的人工超材料,虽属于弹性材料,但组成其单胞的特殊构型使其宏观静态表现为仅能承载一种受力状态,动态表现为仅能传播一种弹性波。本文首先构造了两种五零能模式材料的单胞构型,其具有不同的弹性特性,其中一种材料可传播弹性膨胀波,另一种可传播弹性剪切波。然后分别采用代表体元法和均匀化法分析这两种单胞的等效弹性模量。五零能模式材料的分析分为两步更直观,开始从单胞桁架模型入手,检验单胞构型是否满足五零能模式的定义,然后分析单胞实体模型,考察单胞构型的结构参数与其等效弹性模量的关系。研究表明对于这种低密度弹性材料的分析,代表体元法更适合。  相似文献   

17.
The propagation of oscillatory waves through periodic elastic composites has been analysed on the basis of the Floquet theory. This leads to self-adjoint differential equation systems which it was proved convenient to solve by variational methods. Many composites, such as the light-weight high-strength boron-epoxy material, consist of strong reinforcing components in a plastic matrix. The latter can exhibit viscoelastic properties which can have a significant influence on wave propagation characteristics. Replacement of the elastic constant by the viscoelastic complex modulus changes the mathematical structure so that the differential equation system is no longer self-adjoint. However, a modification of the variational principles is suggested which retains formal self-adjointness, and yields variational principles which contain additional boundary terms. These are applied to the determination of wave speeds and mode shapes for a laminated composite made of homogeneous elastic reinforcing plates in a homogeneous viscoelastic matrix for plane waves propagating normally to the reinforcing plates. These results agree well with the exact solution which can be evaluated in this simple case. The variational principles permit solutions for periodic, but otherwise arbitrary variation of material properties.  相似文献   

18.
Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.  相似文献   

19.
The composite under investigation consists of an elastoplastic matrix reinforced by elastic particles or weakened by pores. The material forming the matrix is pressure-sensitive. The Drucker–Prager yield criterion and a one-parameter non-associated flow rule are employed to formulate the yield behavior of the matrix. The objective of this work is to estimate the effective elastoplastic behavior of the composite under isotropic tensile and compressive loadings. To achieve this objective, the composite sphere assemblage model of Hashin [Z. Hashin, The elastic moduli of heterogeneous materials, ASME J. Appl. Mech. 29 (1962) 143–150] is used. Exact solutions are thus derived as estimations for the effective secant and tangent bulk moduli of the composite. The effects of the loading modes and phase properties on the effective elastoplastic behavior of the composite are analytically and numerically evaluated.  相似文献   

20.
The present paper studies the dynamic effective property of piezoelectric composites embedded with cylindrical piezoelectric fibers under anti-plane harmonic electro-elastic waves. By using the dynamic generalized self-consistent method (DGSM) of electro-elastic coupling wave, the problem of randomly distributed cylindrical fibers in a piezoelectric medium can be analyzed in terms of a representative volume element with a coated fiber embedded in an equivalent effective medium. The interfaces between the fibers and the matrix are assumed to be imperfect which are here modeled as spring- or membrane-type interfaces. Through wave function expansion method and an iterative method, the effective piezoelectrically stiffened shear modulus and the effective wave number are obtained. Examples are conducted to verify the present solutions and to illustrate the dependence of the effective piezoelectrically stiffened shear modulus on the wave number (frequency) as well as the interface properties. The special size effect related to interfacial imperfection is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号