首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The finite element method is used to investigate the performance of a ferroelectric random access memory as a function of its geometry. Performance is characterised by the charge versus electric field relation, and the sensitivity of performance to geometry is explored. The primary geometric variables are the dimensions of a prismatic two-dimensional (2D) island of ferroelectric material, and the edge inclination angle caused by the etching process along the sides of the island. The performance of the two-dimensional ferroelectric device is compared to those of an unsupported ferroelectric thin film and of a ferroelectric film bonded to a substrate.  相似文献   

2.
The origin of nonlinearity in a ferroelectric crystal is domain reorientation, and such a process can be affected by the presence of a compressive stress. In this article we examine how a superimposed compression affects the evolution of new domain and how it changes the shape of the hysteresis loop. We start out by considering the thermodynamic driving force for domain reorientation, and then use a dual-phase homogenization theory to calculate the overall response. To uncover the influence of a compressive stress, the theory is used to calculate the hysteresis loop between the electric displacement D and the electric field E of a BaTiO3 crystal, first without and then with a compression, using a two-consecutive 90° switch model (i.e. 0°  90°  180°). It is found that, from the initial 0° position, the compressive stress will increase the thermodynamic driving force and promote an earlier onset of the 90° domain, but its presence will cause a significant delay for the reorientation process to pass through the intermediate 90° state in route to its final 180° configuration. The D vs. E loop then exhibits a more round shape and a lesser steep slope near the coercive field. The delayed passage and more rounded shape are found to be consistent with a recent experimental observation [Burcsu et al., 2004. J. Mech. Phys. Solids 52, 823–846].  相似文献   

3.
ONMECHANICALPROPERTYOFCONSTRAINTWeiYang(韦杨);LiangLifu(梁立孚);LiangZhongwei(梁忠伟)(ReceivedSep.6,1994;CommunicatedbyChienWeizang)A...  相似文献   

4.
One of the most notable characteristics of ferroelectric materials is that they could undergo spontaneous polarization and spontaneous strain changes by applied fields. Reorientation of the spontaneous polarization and spontaneous polarization strain of ferroelectric inclusions in ferroelectric composites can change microstructures and affect effective electroelastic properties of ferroelectric composites. Based on orientation distribution function and its evolution as well as switching criterion, non-linear electromechanical coupling behaviour of ferroelectric composites is studied by application of micromechanics. A constitutive model of ferroelectric composites is developed. Comparison between analytical and experimental results shows that the model presented can describe many non-linear electromechanical coupling problems of ferroelectric composites such as polarization or depolarization, etc.  相似文献   

5.
This article documents both modeling and experimental studies developed to investigate the switching behavior of ferroelectric single crystals. The theoretical model makes a priori ansatz that switching follows the evolution of a particular domain pattern. The choice of this configuration is dictated by the requirement that domains remain compatible during evolution, giving rise to a low-energy path for the overall switching. The construction of this pattern is achieved using multirank laminates. It offers an advantage of specifying different types of domain wall movements, leading to a distinction for the switching types. A loading experiment is performed on a barium titanate (BaTiO3) single crystal with a constant compressive stress and a cyclic electric field. Both 180 and 90 coercive fields are measured as input parameters required for the theoretical framework. The simulation results show good agreement with the observed strains measured by the present and other available experiments. It is found that depolarization has a non-trivial influence on attainable actuation strains.  相似文献   

6.
Micromechanical finite element methods are developed based on a nonlinear constitutive model of ferroelectric polycrystals. Electromechanical behaviors ahead of an internal electrode tip are numerically simulated in multilayer ferroelectric actuators. Around the electrode edge, the nonuniform electric field generates a concentration of stress due to the incompatible strain as well as spontaneous strain. The preferred domain switching enhances the concentration of residual stress and may cause the actuators to crack. An electrically permeable crack emanating from an internal electrode is analyzed. A large scale domain switching zone is found in the vicinity of crack tips. The larger the actuating strain and electric field are, the larger the switching zone will be. The size of switching zone even reaches the scale of crack length with increasing electromechanical loading.  相似文献   

7.
We analyze the dynamics of a two-dimensional system constituted by two masses subjected to elastic, gravitational and viscous forces and constrained by a moving frictional mono-lateral surface. The model exhibits a time-varying dynamics capable of reproducing the hopping phenomenon, an unwanted phenomenon observed in many applications such as the motion of a robotic arm on a surface or that of a wiper on a windscreen. The system dynamics, besides being affected by geometrical non-linearities, has a non-smooth nature due to the impact and friction laws involved in the model. The complexity of the resulting equations and of the transition conditions require the problem to be solved numerically. Various periodic motions are found and the effect of varying the system parameters, in particular the friction coefficient, is investigated. Finally, simulations are used to gain some insight the behavior of the windscreen wiper.  相似文献   

8.
In this paper, we compute the constitutive behavior of a ferroelectric ceramic by a plane strain finite element model, where each element represents a single grain in the polycrystal. The properties of a grain are described by the microscopic model for switching in multidomain single crystals of ferroelectric materials presented by Huber et al. [J. Mech. Phys. Solids 47 (1999) 1663]. The poling behavior of the polycrystal is obtained by employing the finite element formulation for electromechanical boundary value problems developed by Landis [Int. J. Numer. Meth. Eng. 55 (2002) 613]. In particular, we address the influence of the single grain properties and the interaction between grains, respectively.  相似文献   

9.
In the present paper, the problem of propagation of collapsing cylindrical shock wave in an ideal gas permeated by a transverse magnetic field with infinite electrical conductivity is investigated. Here it is assumed that the medium ahead of the shock front is uniform and at rest. Also, its counter pressure concerning the motion of the wave front is neglected. This problem admits a self similar solution of second kind. The similarity exponent has been computed by solving a nonlinear eigenvalue problem and integrating numerically the self-similar equations for various values of adiabatic heat exponent and Cowling number. Numerical computations have been performed to determine the flow field behind the shock wave. The influence of magnetic field strength and adiabatic heat exponent on the flow parameters for various cases is presented.  相似文献   

10.
The effect of low pressures on the fatigue, tensile and creep behavior is discussed. The data are interpreted in terms of the accumulation of dislocations in the surface region. It is suggested that the mechanical behavior is influenced by the rate of escape of dislocations through the surface. Initially, the oxide layer plays an important role; however, as the strain increases, the dislocation layer exerts a large influence.  相似文献   

11.
A two-scale micromechanics model is developed in this paper to analyze domain switching in ferroelectric ceramics, using a probabilistic domain switching criterion based on energetic analysis. The microstructure of ferroelectric ceramics at two distinct length scales, domains and grains, has been carefully analyzed. The interaction at domain level is accounted for by energy minimization theory, while the fluctuation at grain level is analyzed using ellipsoidal two-point correlation function. The model has been implemented by Monte Carlo method, and applied to simulate the electric poling and mechanical depoling of Pb(ZrxTi1-x)O3 (PZT) ceramics across morphotropic phase boundary (MPB). The drastically different switching characteristics of PZT ceramics across MPB has been captured, and good agreement with experiments has been observed. The effects of the transformation strains and spontaneous polarizations are highlighted, confirming the proposition of Li et al. [2005. Domain switching in polycrystalline ferroelectric ceramics. Nature Materials 4, 776–781] that the strain compatibility plays a dominant role in domain switching in ferroelectric ceramics.  相似文献   

12.
This work focuses on a theoretical investigation of the shape and equilibrium height of a magnetic liquid–liquid interface formed between two vertical flat plates in response to vertical magnetic fields. The formulation is based on an extension of the so called Young–Laplace equation for an incompressible magnetic fluid forming a two-dimensional free interface. A first order dependence of the fluid susceptibility with respect to the magnetic field is considered. The formulation results in a hydrodynamic-magnetic coupled problem governed by a nonlinear second order differential equation that describes the liquid–liquid meniscus shape. According to this formulation, five relevant physical parameters are revealed in this fluid static problem. The standard gravitational Bond number, the contact angle and three new parameters related to magnetic effects in the present study: the magnetic Bond number, the magnetic susceptibility and its derivative with respect to the field. The nonlinear governing equation is integrated numerically using a fourth order Runge-Kutta method with a Newton–Raphson scheme, in order to accelerate the convergence of the solution. The influence of the relevant parameters on the rise and shape of the liquid–liquid interface is examined. The interface shape response in the presence of a magnetic field varying with characteristic wavenumbers is also explored. The numerical results are compared with asymptotic predictions also derived here for small values of the magnetic Bond number and constant susceptibility. A very good agreement is observed. In addition, all the parameters are varied in order to understand how the scales influence the meniscus shape. Finally, we discuss how to control the shape of the meniscus by applying a magnetic field.  相似文献   

13.
IntroductionThereexistmanyimperfectionsthatareimpossibletoavoidinanengineeringstructure.Someimportantexperiments[1,2]haveshownthatimperfectionsinastructuremaymakethecriticalloaddecreaseevidently.Sotheinfluenceofimperfectionsuponthecriticalloadofthest…  相似文献   

14.
It is extremely difficult to take into account the variety of aspects of the behavior of solids when they are deformed. Hence, when designing constructions, simplifying models are introduced which take into account only the most important properties of the materials in each specific case (creep, aftereffect, plasticity, etc.), and the corresponding phenomenological theories are employed [1], In this paper we attempt to construct the fundamentals of a theory which describes the phenomenon of ferroelasticity due to the behavior of thermoelastic martensite, first discovered in [2], The apparatus of this theory will be necessary when designing self-recovering constructions which can be manufactured from materials with a mechanical shape memory.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 122–126, May–June, 1979.  相似文献   

15.
Ferroelectrics are crystalline inorganic materials consisting of domains with different directions of spontaneous polarization. By application of sufficiently high electric fields, these domains can switch into a common direction, thus making the material piezoelectric. Due to ferroelasticity, the domains can be also switched into different states by the application of mechanical stress. In polycrystalline materials, as used in most applications, electric and stress fields interact so as to maintain compatibility. We study the influence of grain-to-grain interactions on the overall and local switching behavior and in particular the induced stresses inside grains and across grain boundaries. The behavior inside each grain is represented by the single-crystal model of [Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M., 1999. A constitutive model for ferroelectric polycrystals. Journal of the Mechanics and Physics of Solids 47 (8), 1663–1697] and the polycrystal response is obtained through a two-dimensional multi-grain model in which grains are represented individually. We investigate the effect of random grain orientations, both in the plane of consideration and in three directions, and compare plane strain with plane stress conditions. It is found that the overall piezoelectric response under electric loading is not dependent only on the intra- and intergranular stresses in the plane but is also significantly affected by stresses in through-thickness direction.  相似文献   

16.
17.
Certain physical results from the study of dislocation motions lead to the concept of ideal viscoplasticity. In particular the existence of a limiting dislocation velocity, coupled with an upper limit on dislocation density, provides an upper bound on the dislocation flux. Thus, the plastic strain rate in polycrystalline metals must also be bounded in many cases of interest. This physical situation can be idealized by postulating transition functions from zero to maximum flux in as simple as possible a manner consistent with the problem under investigation and the solution features to be examined. A drastic transition function is given here which leads to multiaxial stress, strain, strain-rate relations of reasonable simplicity and these are illustrated by application to several example problems. A common feature of the solutions of the examples treated is that the material response is partly rate dependent and partly rate independent. This indicates that the corresponding physical situations are characterized by large dislocation fluxes during part of the time and very small fluxes at other times.  相似文献   

18.
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u i , electric displacement D i and volume fraction ρ I of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction ρ I of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch. The project supported by the National Natural Science Foundation of China (10572138).  相似文献   

19.
Consider a semigroup describing the evolution of deformations of an inelastic body. This work investigates the sensitivity of this semigroup with respect to variations of the inelastic constitutive relations, and contains a full well posedness (Lipschitz) result. Particularly relevant is the case of material constants determined experimentally.Received: 24 June 2004, Accepted: 13 November 2004, Published online: 4 March 2005PACS: 74D10 Correspondence to: R.M. Colombo  相似文献   

20.
This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conserva-tive and non-conservative constraint homonomic systems. The definition and properties of canonical coordinates are introduced. The relation between Lie point symmetries and the canonical coordinates of the constraint mechanical system are expressed. By this re-lation, the canonical coordinates can be obtained. Properties of the canonical coordinates and the Lie symmetry theory are used to seek the first integrals of constraint mechanical system. Three examples are used to show applications of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号