首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper presents a two-dimensional SPH model designed to simulate free-surface flows of dense granular materials. Smoothed particle hydrodynamics (SPH) is a mesh-free numerical method based on a Lagrangian discretization of the continuum mass and momentum conservation equations. The rheology of dense granular materials is modelled using a new local constitutive law recently proposed by Jop et al. (Nature, 2006). Of the viscoplastic class, this law is characterized by an apparent viscosity depending both on the local strain rate and local pressure. Validation test cases of the model in steady and unsteady configurations are presented. For steady cases (vertical chute flow and uniform free-surface layers on inclines), excellent agreement with analytical predictions is obtained. In the unsteady case, the simulations satisfactorily capture the dynamics of gravity-driven surges observed in experiments, including behaviours that are very specific to granular materials. Among the various parameters involved in the computations, the influence of SPH particle configuration within the flow and of the threshold viscosity used in the regularization of the constitutive yield criterion are particularly discussed.  相似文献   

2.
《Comptes Rendus Mecanique》2007,335(9-10):559-583
The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically. To cite this article: D. Dutykh, F. Dias, C. R. Mecanique 335 (2007).  相似文献   

3.
In solution of the Euler equations in the steady state external flows, error or residual waves are blamed for decelerating the convergence. These waves may be damped by adding a bulk viscosity term to the momentum equations. We analyse effects of this term on the linearized differential equations, and study its explicit and implicit implementation in one and two space dimensions. Optimum values of the bulk viscosity damping (BVD) are discussed. After generalization to two space dimensions, its performance both alone and in combination with a soft wall boundary condition and residual smoothing in central differencing codes is reviewed. It is shown that BVD is complementary to them, and acts independently of them. Finally, application of BVD in solution of low Mach number flows is considered, to show how it can strongly stabilize and accelerate these low Mach number computations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper the effect of thixotropy in the hydrodynamic behavior of thin films is studied. The simple problem of leveling on a horizontal substrate is considered. The rheological properties of the material are assumed to evolve over time due purely to changes in its internal structure. These changes are modeled in terms of a single structural variable. Neither elastic nor yielding effects are taken into account. More specifically, two distinct rheological models are considered: the simple model proposed by Moore and the more complex model proposed by Baravanian et al. These models exhibit a large range of variation for the liquid viscosity across the film thickness. After deriving the hydrodynamic equations governing leveling flows with the standard assumptions required by the lubrication approximation and running time-dependent numerical simulations, the nonlinear leveling history of the liquid can be predicted as a function of the initial microstructural state, rheological parameters, and initial disturbance of the liquid free surface. The main effort of this work is devoted to devising approximation schemes which lead to significant simplifications of the governing equations and their numerical computations. By approximating the inverse of viscosity as a monotonic function between its substrate and free-surface values, excellent agreement is found for the film amplitude, irrespective of the values of the rheological parameters of both models. Finally, a linear analysis yields a generalization of the Orchard’s law of leveling for Newtonian liquids to take into account the effect of thixotropy.  相似文献   

5.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We explore the concept of apparent transmissivity for bounded randomly heterogeneous media under steady-state flow regime. The novelty of our study consists of investigating a tensorial nature of apparent transmissivity. We demonstrate that apparent transmissivity of bounded domains is anisotropic even though an underlying local transmissivity field is statistically isotropic. For rectangular flow domains, we derive an analytical expression for the apparent transmissivity tensor via localization and perturbation expansion of the nonlocal mean flow equations in the variance of log-transmissivity. In this expression, almost everywhere the off-diagonal terms are several orders of magnitude smaller than the diagonal terms. When the domain size relative to the log-transmissivity correlation scale is large, the longitudinal and transverse components of the apparent transmissivity tensor approach the geometric mean of local transmissivity. While rigorously valid for mean uniform flows only, our expression for the apparent transmissivity tensor leads to mean hydraulic head distributions that compare favorably with those obtained through Monte-Carlo simulations and the nonlocal mean flow equations even in the presence of pumping wells. This agreement deteriorates in the vicinity of wells and as pumping rates increase.  相似文献   

7.
A differential equation of the kinetic-energy balance of turbulence is used in a number of papers to close the equations describing average motion in turbulent flows. On the basis of this relation, a differential equation for turbulent viscosity is obtained herein. Numerical computations are carried out for incompressible non-self-similar turbulent and transition flows in awake, a jet, and a boundary layer; universal constants in the equation for the viscosity are refined. The flow in a wake and boundary layer with high longitudinal pressure gradients is investigated by analytical and numerical methods. Dimensionless criteria determining the nature of the effect of the pressure gradient on the average flow and turbulent viscosity are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 114–127, September–October, 1971.The author is greateful to I. P. Smirnov, S. Yu. Krasheninnikov, and V. B. Kuz'mich for aid in compiling the program for the numerical computations and to L. L. Bychkov for processing the computational results and plotting the graphs.  相似文献   

8.
In this paper we analyse numerical models for time-dependent Boussinesq equations. These equations arise when so-called Boussinesq terms are introduced into the shallow water equations. We use the Boussinesq terms proposed by Katapodes and Dingemans. These terms generalize the constant depth terms given by Broer. The shallow water equations are discretized by using fourth-order finite difference formulae for the space derivatives and a fourth-order explicit time integrator. The effect on the stability and accuracy of various discrete Boussinesq terms is investigated. Numerical experiments are presented in the case of a fourth-order Runge-Kutta time integrator.  相似文献   

9.
The Shallow–Water Equations (SWEs), also referred to as the de Saint-Venant equations, constitute the current governing mathematical tool for free-surface water flows. These include, e.g., flood flows in rivers and in urban zones, flows across hydraulic structures as dams or wastewater facilities, flows in the environmental fields, glaciology, or meteorology. Despite this attractiveness, the system of two partial differential equations has an exact mathematical solution only for a limited number of problems of practical relevance.This historical work on the SWEs is based on a correspondence between two 19th-century scientists, de Saint-Venant and Boussinesq. Their well-known papers are thus commented from the point of development of their theory; the input of both scientists is evidenced by their writings, and comments of both to each other that led to what is commonly known as the SWEs. Given the age difference of the two of 45 years, the experienced engineer de Saint-Venant, and the mathematician Boussinesq, two eminent researchers, met to discuss not only problems in hydraulics, but in physics generally. In addition, their correspondence embraced also questions in ethics, religion, history of sciences, and personal news.The results of the SWEs cease to hold if streamline curvature effects dominate; this includes breaking waves, solitary and cnoidal waves, or non-linear waves in general. In most other cases, however, the SWEs perfectly apply to typical flows in engineering practice; they are considered the fundamental system of equations describing open channel flows. This work thus provides a background to its birth, including lots of comments as to its improvement, physical meanings, methods of solution, and a discussion of the results. This paper also deals with the steady flow equations, gives a short account on the main persons mentioned in the Correspondence, and provides a summary of further developments of the SWEs until 1920.  相似文献   

10.
Stable transport of high-concentrated solute is considered in horizontal boundary-layer flows above a wall of constant concentration. Mixing is accomplished by advection and molecular diffusion only. The utilized boundary-layer approximation allows to investigate the exclusive influence of gravity on vertical diffusion. The hydrodynamic dispersion mechanism was disregarded in the present study which confines its applicabilty to flows with small molecular Péclet numbers. A linear variability of both the fluid's density and viscosity with changing concentration is taken into account as well as the complete set of mass-fraction based balance equations. Steady-state concentration and velocity distributions above the horizontal wall have been obtained using the series truncation method which recently had proven successful to solve the corresponding problem using the Boussinesq assumption. The impact of the latter on these distributions is discussed by what has been additionally-facilitated by the existence of an exact analytical solution for the simpler Boussinesq case. Whereas no density variability influence exists with use of the Boussinesq assumption the complete system of mass-fraction based equations predicts opposing effects of density and viscosity differences between oncoming and near-wall fluids on concentration distributions. Larger density differences narrow the transition zone between both fluids, larger viscosity differences widen it. Thus, a compensation of both effects can be observed for individual fluids and for certain regions of the flow field.  相似文献   

11.
In this study, we investigate the growth of bubbles within predominately extensional-deformation flows of thin film stretching form. This involves more than one free-surface to the flow (multiple surfaces), typically as inner (bubble) and outer (filament) boundaries that introduces fluid–gas interfacial treatment. Various bubble initial states and locations may be considered. The problem is discretised in space–time through a hybrid-finite element/volume pressure-correction formulation, coupled with an arbitrary Lagrangian–Eulerian (ALE) coupled with VOF scheme to track domain-mesh and free-surface movement. We contrast these results against the results from a complete ALE algorithm. Various fluid-filament materials have been considered, covering such properties as constant viscosity fluids (Newtonian), low-polymeric/high-solvent viscosity Boger-type (Oldroyd-B) fluids and high-polymeric/low-solvent viscosity elastic-type fluids (Oldroyd-B and Phan-Thien/Tanner). Numerical solutions are presented in terms of comparison between algorithms (ALE versus hybrid ALE/VOF), shapes (bubble shapes, filament shapes), contours of extra-stress (magnitude and location), mid-filament radius and extensional viscosity.  相似文献   

12.
Geometric flows related to shape optimization problems of the Bernoulli type are investigated. The evolution law is the sum of a curvature term and a nonlocal term of Hele–Shaw type. We introduce generalized set solutions, the definition of which is widely inspired by viscosity solutions. The main result is an inclusion preservation principle for generalized solutions. As a consequence, we obtain existence, uniqueness and stability of solutions. Asymptotic behavior for the flow is discussed:we prove that the solutions converge to a generalized Bernoulli exterior free-boundary problem.  相似文献   

13.
稀薄流到连续流的气体运动论模型方程算法研究   总被引:10,自引:0,他引:10  
李志辉  张涵信 《力学学报》2002,34(2):145-155
通过引入碰撞松弛参数和当地平衡态分布函数对BGK模型方程进行修正,确定含流态控制参数可描述不同流域气体流动特性的气体分子速度分布函数的简化控制方程。发展和应用离散速度坐标法于气体分子速度空间,利用一套在物理空间和时间上连续而速度空间离散的分布函数来代替原分布函数对速度空间的连续依赖性。基于非定常时间分裂数值计算方法和无波动、无自由参数的NND耗散差分格式,建立直接求解气体分子速度分布函数的气体运动论有限差分数值方法。推广应用改进的Gauss-Hermite无穷积分法和华罗庚-王元提出的以单和逼近重积分的黄金分割数论积分方法等,对离散速度空间进行宏观取矩获取物理空间各点的气体流动参数,由此发展一套从稀薄流到连续流各流域统一的气体运动论数值算法。通过对不同Knudsen数下一维激波管问题、二维圆柱绕流和三维球体绕流的初步数值实验表明文中发展的数值算法是可行的。  相似文献   

14.
Rapid Distortion Approximations (RDA) may be used to simplify the Reynolds stress equations in rapidly distorted flows, as suggested by Dussauge and Gaviglio (1987). These approximations neglect diffusive and dissipative terms while retaining the production and pressure terms. The retained terms are then modeled as functions of the Reynolds stress tensor and gradients of the mean flow. The models for the pressure-strain term as developed by Lumley (1978) and Shih and Lumley (1985) are evaluated by comparing the calculated results with experimental data for the case of a Mach 2.84 turbulent boundary layer in a 20° centered expansion. The agreement between computed and experimentally obtained Reynolds stresses was found to be encouraging.Dedicated to Professor J.L. Lumley on the occasion of his 60th birthday.This work was supported by the U.S. Air Force under AFOSR Contract 89-0420. Monitored by Dr. James McMichael.  相似文献   

15.
 A newly developed non-intrusive approach has been devised for studying near-surface flows where it is important to be able to construct correlations between small-sloped free-surface deformations and near-surface velocities. This method combines digital particle image velocimetry (DPIV) and the reflective mode of the free-surface gradient detector (FSGD) technique into a single measurement system, providing us with an approach to be able to characterize correlations between elevation and kinematic properties, such as velocity and vorticity, which is essential in understanding near surface turbulence. Furthermore, as the free-surface elevation is directly proportional to the pressure for low Froude number flows, this method will allow for the measurement of pressure near the free surface. This will also be useful in calculating the pressure-velocity term in the turbulent kinetic energy equation for near-surface flows. The approach is explained and demonstrated by measuring these correlations for a vertical shear layer intersecting a free surface. Received: 2 August 1999/Accepted: 23 July 2000  相似文献   

16.
The Adomian decomposition method (ADM) is an approximate analytic method for solving nonlinear equations. Generally, an approximate solution can be ob- tained by using only a few terms. However, in applications, we need to use it flexibly according to the real problem. In this paper, based on the ADM, we give a modified asymptotic Adomian decomposition method and use it to solve the nonlinear Boussinesq equation describing groundwater flows. The example shows effectiveness of the modified asymptotic Adomian decomposition method.  相似文献   

17.
In the context of LES of turbulent flows, the control of kinetic energy seems to be an essential requirement for a numerical scheme. Designing such an algorithm, that is, as less dissipative as possible while being simple, for the resolution of variable density Navier–Stokes equations is the aim of the present work. The developed numerical scheme, based on a pressure correction technique, uses a Crank–Nicolson time discretization and a staggered space discretization relying on the Rannacher–Turek finite element. For the inertia term in the momentum balance equation, we propose a finite volume discretization, for which we derive a discrete analogue of the continuous kinetic energy local conservation identity. Contrary to what was obtained for the backward Euler discretization, the dissipation defect term associated to the Crank–Nicolson scheme is second order in time. This behavior is evidenced by numerical simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A finite element algorithm for solving the Navier-Stokes equations is presented for the analysis of high-speed viscous flows. The algorithm uses triangular elements. The unsteady equations are integrated to steady state with a Runge-Kutta time-marching scheme. A postprocessing artificial dissipation term is introduced to stabilize the computations and to dampen dissipation errors. Numerical results are compared with the calculation of uniform flow on a rectangular region which encounters an embedded oblique shock. A shock/turbulent boundary layer problem is also solved and results are compared with experimental data. It is shown that the postprocessing smoothing term and boundary conditions similar to the finite difference method work well in the present numerical studies.  相似文献   

19.
用拟压缩性方法和Jameson的有限体积算法求解了二维和三维定常可可压Euler方程。分别采用显、隐式时间离散推进求解;分析了人工粘性的阶数对定常解收敛性的影响,应用该方法计算了单个翼型和翼身组合体的低速绕流,结果与实验吻合较好。  相似文献   

20.
We study the stability of two-dimensional solutions of the three-dimensional Navier–Stokes equations, in the limit of small viscosity. We are interested in steady flows with locally closed streamlines. We consider the so-called elliptic and centrifugal instabilities, which correspond to the continuous spectrum of the underlying linearized Euler operator. Through the justification of highly oscillating Wentzel–Kramers–Brillouin expansions, we prove the nonlinear instability of such flows. The main difficulty is the control of nonoscillating and nonlocal perturbations issued from quadratic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号