首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is performed for the problem of a finite Griffith crack moving with constant velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an elastic layers. The combined out-of-plane mechanical and in-plane electrical loads are applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor(DSIF) is determined, and numerical results show that DSIF depends on the crack length, the ratio of stiffness and thickness, and the magnitude and direction of electrical loads as well as the crack speed. In case that the crack moves along the interface of piezoelectric and elastic half planes, DSIF is independent of the crack speed.  相似文献   

2.
A mechanical model was established for the antiplane dynamic fracture problem of a functionally graded coating–substrate structure with a coating crack perpendicular to the weak-discontinuous interface. The problem was reduced to a Cauchy singular integral equation by the methods of Laplace and Fourier integral transforms. Erdogan’s collocation method and the Laplace numerical inversion proposed by Miller and Guy were used to calculate the dynamic stress intensity factors. Three conclusions were drawn through parametric studies: (a) unlike the conclusion drawn for an interfacial crack, reducing the weak discontinuity of the interface will not necessarily decrease the dynamic stress intensity factor (DSIF) of the coating crack perpendicular to the interface; (b) increasing the stiffness of the substrate when that of the coating is fixed, or decreasing the stiffness of coating when that of the substrate is fixed, will be beneficial for the reduction of the DSIF of a coating crack perpendicular to the interface; and (c) the free surface has a greater influence on the DSIF than the interface does, and the effect of the interface on the DSIF is greater than that of the material stiffness in the crack-tip region.  相似文献   

3.
黏弹性体界面裂纹的冲击响应   总被引:3,自引:0,他引:3  
研究两半无限大黏弹性体界面Griffith裂纹在反平面剪切突出载荷下,裂纹尖端动应力强度因子的时间响应,首先,运用积分变换方法将黏弹性混合黑社会问题化成变换域上的对偶积分方程,通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程,运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子,再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行分析。  相似文献   

4.
In fracture analysis of piezoelectric devices, the structural dimension is often assumed to be infinite at least in one direction. However, all practical piezoelectric structures are finite and their dimensions in different directions are often comparable and cannot be simplified as infinite. The assumption of infinite dimension may lead to inexact theoretical results. The present work aims at studying the interfacial fracture behavior of a functionally graded piezoelectric layer on a dielectric substrate with finite dimension. The crack problem is solved by the methods of Fourier series and Cauchy singular integral equation. Parametric studies on the stress intensity factor (SIF) reveal the following: (a) when a crack tip is near to an interface end, its SIF is mainly governed by the end effect; (b) when a crack is far from the interface ends and the piezoelectric layer is thin, its SIF is principally affected by the thickness of the piezoelectric layer, and (c) only when a crack is far from the interface ends and meanwhile the piezoelectric layer is thick will its SIF be dominated by the non-homogeneity parameter, and in this case, the SIF increases with the increasing non-homogeneity parameter.  相似文献   

5.
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.  相似文献   

6.
Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored.  相似文献   

7.
The mechanical model was established for the anti-plane dynamic fracture problem for two collinear cracks on the two sides of and perpendicular to a weak-discontinuous interface between two materials with smoothly graded elastic properties, as opposed to a sharp interface with discontinuously changing elastic properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. The integral equations were solved by Erdogan's collocation method and the dynamic stress intensity factors in the time domain were obtained through Laplace numerical inversion proposed by Miller and Guy. The influences of geometrical and physical parameters on the dynamic stress intensity factors were illustrated and discussed, based on which some conclusions were drawn: (a) to increase the thickness of the FGM strip on either side of the interface will be beneficial to reducing the DSIF of a crack perpendicular to a bi-FGM interface and embedded at the center of one of the FGM strips; (b) To increase the rigidity of the FGM strip where the crack is located will increase the DSIF. However, when the material in one side of the interface is more rigid, the DSIF of the interface-perpendicular embedded crack in the other side will be reduced; (c) To decrease the weak-discontinuity of a bi-FGM interface will not necessarily reduce the stress intensity factor of a crack perpendicular to it, which is different from the case of interfacial crack; (d) For two collinear cracks with equal half-length, when the distance between the two inner tips is less than about three times of the half-length, the interaction of them is intensified, however, when the distance is greater than this the interaction becomes weak.  相似文献   

8.
This work deals with the mode III fracture problem of a cracked functionally graded piezoelectric surface layer bonded to a cracked functionally graded piezoelectric substrate. The cracks are normal to the interface and the electro-elastic material properties are assumed to be varied along the crack direction. Potential and flux types of boundary condition are assigned on the edge of the surface layer. The problem under the assumptions of impermeable and permeable cracks can be formulated to the standard singular integral equations, which are solved by using the Gauss–Chebyshev technique. The effects of the boundary conditions, the material properties and crack interaction on the stress and electric displacement intensity factors are discussed.  相似文献   

9.
在多层压电元件中,由于界面处材料成分和性质的突变,常常导致界面处应力集中,使得界面处出现开裂或蠕变现象,从而大大缩短了压电元件的使用寿命。功能梯度压电材料作为界面层,可有效的缓解界面材料不匹配导致的破坏。本文主要研究利用功能梯度压电材料界面层连接压电涂层和基底,分析三层结构在圆柱型压头作用下的力电响应。利用傅里叶积分变换技术,本文将压电涂层-功能梯度压电层-基底结构在刚性圆柱压头作用下的二维平面应变接触问题转化为带有柯西核的奇异积分方程。运用高斯-切比雪夫积分公式,将奇异积分方程转化为线性方程组并对其进行数值求解,得到压电涂层-功能梯度压电层-基底结构在圆柱形压头作用下的应力分布和电位移分布。数值结果表明,梯度压电材料参数的变化对结构中的力电响应具有重要的影响。本文研究结果对于利用功能梯度压电界面层消除界面处的应力不连续导致的界面破坏具有重要的理论指导意义,研究结果可为功能梯度压电材料界面层的设计提供帮助。  相似文献   

10.
The dynamic behaviour of piezoelectric sensors depends on the bonding condition along the interface between the sensors and the host structure. This paper provides a comprehensive theoretical study of the effect of the bonding layer on the coupled electromechanical characteristics of a piezoelectric sensor bonded to an elastic substrate, which is subjected to a high frequency elastic wave. A sensor model with a viscoelastic bonding layer, which undergoes a shear deformation, is proposed to simulate the two dimensional electromechanical behaviour of the integrated system. Analytical solution of the problem is provided by using Fourier transform and solving the resulting integral equations in terms of the interfacial stress. Numerical simulation is conducted to study the effect of the bonding layer upon the dynamic response of the sensor under different loading frequencies. The results indicate that the modulus and the thickness of the bonding layer have significant effects on sensor response, but the viscosity of the bonding layer is relatively less important.  相似文献   

11.
The scattering of Love waves by an interface crack between a piezoelectric layer and an elastic substrate is investigated by using the integral transform and singular integral equation techniques. The dynamic stress intensity factors of the left and the right crack tips are determined. It is found from numerical calculation that the dynamic response of the system depends significantly on the crack configuration, the material combination and the propagating direction of the incident wave. It is expected that specifying an appropriate material combination may retard the growth of the crack for a certain crack configuration. Project supported by the National Natural Science Foundation of China (No. 19891180), the Fundamental Research Foundation of Tsinghua University (JZ 2000.007) and the Fund of the Education Ministry of China.  相似文献   

12.
宋天舒  李冬 《力学学报》2010,42(6):1219
采用Green函数法研究界面上含圆孔边界径向有限长度裂纹的两半无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题.首先构造出具有半圆型凹陷半空间的位移Green函数和电场Green函数,然后采用裂纹"切割"方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程.最后作为算例,给出了孔边界面裂纹尖端动应力强度因子的计算结果图并进行了讨论.  相似文献   

13.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

14.
The effects of a piezoelectric layer on the stability of viscoelastic plates subjected to the follower forces are evaluated. The differential equation of motion of the viscoelastic plate with the piezoelectric layer is formulated using the two-dimensional viscoelastic differential constitutive relation and the thin plate theory. The weak integral form of the differential equations and the force boundary conditions are obtained. Using the element-free Galerkin method, the governing equation of the viscoelastic rectangular plate with elastic dilatation and Kelvin–Voigt distortion is derived, subjected to the follower forces coupled with the piezoelectric effect. A generalized complex eigenvalue problem is solved, and the force excited by the piezoelectric layer due to external voltage is modeled as the follower tensile force; this force is used to improve the stability of the non-conservative viscoelastic plate. For the viscoelastic plate with various boundary conditions, the results for the instability type and the critical loads are presented to show the variations in these factors with respect to the location of the piezoelectric layers and the applied voltages. The stability of the viscoelastic plates can be effectively improved by the determination of the optimal location for the piezoelectric layers and the most favorable voltage assignment.  相似文献   

15.
将波函数展开法与奇异积分方程技术相结合研究了平面波对有部分脱胶衬砌的圆形孔洞的散射。将脱离区看作弧形裂纹并忽略裂纹表面的相互作用。将衬砌和基体中的波场展开成Fou-rier-Bessel级数,利用混合边界条件得到一组对偶级数方程组并进一步转化成Hilbert奇异积分方程。数值求解给出了脱离区大小和衬砌厚度对动应力强度因子(DSIF)和散射截面(SCS)的影响。结果显示由于脱胶,动应力强度因子和散射截面呈现明显的低频共振特性。  相似文献   

16.
The anti-plane impact fracture analysis was performed for a weak-discontinuous interface in a symmetrical functionally gradient composite strip. A new bi-parameter exponential function was introduced to simulate the continuous variation of material properties. Using Laplace and Fourier integral transforms, we reduced the problem to a dual integral equation and obtained asymptotic analytical solution of crack-tip stress field. Based on the numerical solution of the second kind of Fredholm integral equation transformed from the dual integral equation, the effects of the two non-homogeneity parameters on DSIF were discussed. It was indicated that the relative stiffness of the interface and the general stiffness of the whole structure are two important factors affecting the impact fracture behavior of the weak-discontinuous interface. The greater the relative stiffness of the interface is, the higher the value of the dynamic stress intensity factor will be. The greater the general stiffness of the whole structure is, the shorter the time for DSIF to arrive at the peak value and then to stabilize to the steady one. If the general stiffness of the whole structure is great enough, there will be an oscillation between the peak and steady values of DSIF.  相似文献   

17.
Summary A piezoelectric material layer bonded to an elastic substrate is investigated. The piezoelectric layer contains an edge crack that is perpendicular to the surface of medium. The poling axis of the piezoelectric layer is parallel to its edge. The elastic layer can be an ideal insulator or an ideal conductor. The Fourier transform technique is used to reduce the problem to a solution of singular integral equations. Both impermeable crack and permeable crack assumptions are considered. Stress and electric displacement intensity factors are investigated for different dimensions of the medium. A double-edge cracked symmetric piezoelectric laminate under symmetric electro-mechanical load is also investigated. BLW would like to thank the National Science Foundation of China (#10102004) and the City University of Hong Kong for the support of this work (DAG #7100219). YGS also thanks the Multidiscipline Scientific Research Foundation Project (HIT. MD 2001. 39) of the Harbin Institute of Technology and the SRF for ROCS, SEM.  相似文献   

18.
The behavior of four parallel symmetry permeable interface cracks in a piezoelectric layer bonded to two half-piezoelectric spaces under anti-plane shear loading is investigated. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved by the Schmidt method. This process is quite different from that papers adopted previously. The normalized stress and electrical displacement intensity factors are determined for different geometric and property parameters for permeable crack surface conditions. Numerical examples are provided to show the effect of the geometry of the interacting cracks, the thickness and the materials constants of the piezoelectric layer upon the stress and electric displacement intensity factors of the cracks. It is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.  相似文献   

19.
The dynamic response of a functionally graded layered structure with a crack crossing the interface is analyzed. The in-plane impact loading condition is considered. By using the Laplace and Fourier integral transforms, singular integral equation method and residue theory, the present problem is reduced to a singular integral equation in the Laplace transform domain. The influences of Young’s modulus ratio, thickness ratio, and crack length and location on the dynamic stress intensity factors (DSIFs) are investigated. Particularly, the DSIFs corresponding to different crack locations are shown in the case when the crack center moves from one layer to another layer through the interface. The peak and static values and overshoot characteristics of the DSIFs are analyzed. It is found that these values typically exhibit kinking behavior when the crack tips arrive at the interface. This study is different from previous other investigations in the following respects: (1) the dynamic response of a crack crossing the interface of a functionally graded structure is studied analytically, which has hardly been done in the past and (2) the present model can be reduced to some important problems, such as a functionally graded coating-substrate structure with a crack in the graded coating or homogeneous substrate or one intersecting the interface.  相似文献   

20.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号