首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Problems of nonlinear cylindrical bending of sigmoid functionally graded plates in which material properties vary through the thickness are considered. The variation of the material properties follows two power-law distributions in terms of the volume fractions of constituents. The nonlinear strain-displacement relations in the von Kármán sense are used to study the effect of geometric nonlinearity. The governing equations are reduced to a linear differential equation with nonlinear boundary conditions, yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.  相似文献   

2.
This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.  相似文献   

3.
A two-dimensional solution is presented for bending analysis of simply supported functionally graded ceramic–metal sandwich plates. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity and Poisson’s ratio of the faces are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. We derive field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. Numerical results of the sinusoidal, third-order, first-order and classical theories are presented to show the effect of material distribution on the deflections and stresses.  相似文献   

4.
Two refined displacement models, RSDT1 and RSDT2, are developed for a bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The developed models are variationally consistent, have strong similarity with classical plate theory in many aspects, do not require shear correction factor, and give rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress-free surface conditions. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher-order models. The functionally graded layers are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson’s ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Numerical results for deflections and stresses of functionally graded metal–ceramic plates are investigated. It can be concluded that the proposed models are accurate and simple in solving the bending behavior of functionally graded plates.  相似文献   

5.
This paper presents a study on the buckling and vibration of initially stressed composite plates with temperature-dependent material properties in thermal environments. The initial stress is taken to be a combination of a pure bending stress and an axial stress. The temperature distribution in the plate is assumed to be uniform and linear in the transverse direction. The governing equations including the transverse shear deformation effects are established using the variational method. The effects of various parameters on the buckling and vibration behaviors of laminated plates with respective temperature-dependent and temperature-independent material properties are investigated. The buckling load and natural frequency are sensitive to the thermal stresses and initial stresses. Numerical results reveal that temperature-dependent material properties should be considered in the buckling and vibration analysis for laminated plates under thermal conditions.  相似文献   

6.
The large amplitude flexural vibration characteristics of functionally graded material (FGM) plates are investigated here using a shear flexible finite element approach. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of the constituents. The effective material properties are then evaluated based on the rule of mixture. The FGM plate is modeled using the first-order shear deformation theory based on exact neutral surface position and von Kármán’s assumptions for large displacement. The third-order piston theory is employed to evaluate the aerodynamic pressure. The governing equations of motion are solved by harmonic balance method to study the vibration amplitude of FGM plates under supersonic air flow. Thereafter, the non-linear equations of motion are solved using Newmark’s time integration technique to understand the flexural vibration behavior of FGM plates in time domain (simple harmonic or periodic or quasi-periodic). This work is new in the sense that it deals with the non-linear flutter characteristics of FGM plates under high supersonic airflow accounting for both the geometric and aerodynamic non-linearities. Some parametric study is conducted to understand the influence of these non-linearities on the flutter characteristics of FGM plates.  相似文献   

7.
建立了一种非匀质材料新的、扩展的H ellinger-Reissner原理,发展了当一个单元域划分为不同材料特性子域、其元内应力场沿子域表面不连续、且位移场在子域表面也急剧变化时,一个非匀质有限元刚度列式便利方法.这种列式亦可用于对每层横向剪应变均独立处置的厚层板.基于此变分原理建立了新的具有一个无外力圆柱表面的层合杂交应力元,单元各层独立假定的应力场通过以自然坐标表示的非协调位移为权函数使齐次平衡方程变分满足的理性方法及严格满足给定圆柱面上无外力条件得到,位移场在元间及层间连续条件则分别通过Lagrange乘子进行了松弛.数值算例表明:这类新型元可有效地分析具有多类圆柱形槽孔的厚、中厚及薄层板自由孔边应力分布.  相似文献   

8.
Stress concentration factors due to the presence of geometrical discontinuities (circular holes) in functionally graded plates are derived. The material property inhomogeneity is assumed to be in the radial direction originating at the center of the plate. Variable separable closed-form solutions are obtained for the stresses and displacements in functionally graded plates (without and with holes) subjected to anti-plane shear loading. The stresses in functionally graded plates without a hole are not homogeneous as it is in the case of homogeneous plates. Either a stress concentration (more than the applied stress) or dilution (less than the applied stress) occurs depending on whether the modulus increases (hardening graded material) or decreases (softening graded material) away from the center of the graded plate without a hole. A novel definition of the stress concentration factor due to the geometrical discontinuity in functionally graded plates is derived. The effect of the circular hole in functionally graded plates is to magnify (compared to homogeneous plates) the stress concentration when the modulus decreases away from the center of the hole (softening material). Beneficial reduction of the stress concentration factor is achieved in hardening functionally graded materials.  相似文献   

9.
We present a generalized shear deformation theory in combination with isogeometric (IGA) approach for nonlinear transient analysis of smart piezoelectric functionally graded material (FGM) plates. The nonlinear transient formulation for plates is formed in the total Lagrange approach based on the von Kármán strains, which includes thermo-piezoelectric effects, and solved by Newmark time integration scheme. The electric potential through the thickness of each piezoelectric layer is assumed to be linear. The material properties vary through the thickness of FGM according to the rule of mixture and the Mori–Tanaka schemes. Various numerical examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

10.
Free vibration analysis of functionally graded (FG) thin-to-moderately thick annular plates subjected to thermal environment and supported on two-parameter elastic foundation is investigated. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle based on the first order shear deformation theory (FSDT). The initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic and FG circular and annular plates. The effects of the temperature rise, elastic foundation coefficients, the material graded index and different geometrical parameters on the frequency parameters of the FG annular plates are investigated. The new results can be used as benchmark solutions for future researches.  相似文献   

11.
Nonlinear vibration of beams made of functionally graded materials (FGMs) is studied in this paper based on Euler-Bernoulli beam theory and von Kármán geometric nonlinearity. It is assumed that material properties follow either exponential or power law distributions through thickness direction. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. The direct numerical integration method and Runge-Kutta method are employed to find the nonlinear vibration response of FGM beams with different end supports. The effects of material property distribution and end supports on the nonlinear dynamic behavior of FGM beams are discussed. It is found that unlike homogeneous beams, FGM beams show different vibration behavior at positive and negative amplitudes due to the presence of quadratic nonlinear term arising from bending-stretching coupling effect.  相似文献   

12.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

13.
IntroductionTheuseoflaminatedcompositesinthin_walledstructuresincreasessothateffectsoftransversesheardeformationscannotbeneglectedandinvokequitecomplexesinnonlinearanalysis.Itiswell_knownthatthenonlinearanalysisoflaminatedplatesandshellscountingfortr…  相似文献   

14.
Effects of SH waves in a functionally graded plate   总被引:1,自引:0,他引:1  
A computational method is presented to investigate SH waves in functionally graded material (FGM) plates. The FGM plate is first divided into quadratic layer elements (QLEs), in which the material properties are assumed as a quadratic function in the thickness direction. A general solution for the equation of motion governing the QLE has been derived. The general solution is then used together with the boundary and continuity conditions to obtain the displacement and stress in the wave number domain for an arbitrary FGM plate. The displacements and stresses in the frequency domain and time domain are obtained using inverse Fourier integration. Furthermore, a simple integral technique is also proposed for evaluating modified Bessel functions with complex valued order. Numerical examples are presented to demonstrate this numerical technique for SH waves propagating in FGM plates.  相似文献   

15.
The basic equations of a fully nonlinear theory of electromagnetically conducting flat plates carrying an electric current and exposed to a magnetic field of arbitrary orientation are derived. The relevant equations have been obtained by considering that both the elastic and electromagnetic media are homogeneous and isotropic. The geometrical nonlinearities are considered in the von-Kármán sense, and the soft ferromagnetic material of the plate is assumed to feature negligible hysteretic losses. Based on the electromagnetic and elastokinetic field equations, by using the standard averaging methods, the 3-D coupled problem is reduced to an equivalent 2-D one, appropriate to the theory of plates. Having in view that the elastic structures carrying an electric current are prone to buckling, by using the presently developed theory, the associated problems of buckling and postbuckling are investigated. In this context, the problem of the electrical current inducing the buckling instability of the plate, and its influence on the postbuckling behavior are analyzed. In the same context, the problem of the natural frequency–electrical current interaction of flat plates, as influenced by a magnetic field is also addressed.  相似文献   

16.
A new refined first-order shear-deformation plate theory of the Kármán type is presented for engineering applications and a new version of the generalized Kármán large deflection equations with deflection and stress functions as two unknown variables is formulated for nonlinear analysis of shear-deformable plates of composite material and construction, based on the Mindlin/Reissner theory. In this refined plate theory two rotations that are constrained out in the formulation are imposed upon overall displacements of the plates in an implicit role. Linear and nonlinear investigations may be made by the engineering theory to a class of shear-deformation plates such as moderately thick composite plates, orthotropic sandwich plates, densely stiffened plates, and laminated shear-deformable plates. Reduced forms of the generalized Kármán equations are derived consequently, which are found identical to those existe in the literature. Foundation item: the National Natural Science Foundation of China (59675027) Biography: Zhang Jianwu (1954-)  相似文献   

17.
In this article, a closed-form solution for one-dimensional magnetothermoelastic problem in a functionally graded material (FGM) hollow sphere placed in uniform magnetic and temperature fields subjected to an internal pressure is obtained using the infinitesimal theory of magnetothermoelasticity. Hyper-geometric functions are employed to solve the governing equation. The material properties through the graded direction are assumed to be nonlinear with an exponential distribution. The nonhomogeneity of the material in the radial direction is assumed to be exponential. The temperature, displacement and stress fields and the perturbation of magnetic field vector are determined and compared with those of the homogeneous case. Hence, the effect of inhomogeneity on the stresses and the perturbation of magnetic field vector distribution are demonstrated. The results of this study are applicable for designing optimum FGM hollow spheres.  相似文献   

18.
In this paper transient thermal stresses in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on classical theory of thermoelasticity are considered. The volume fraction distribution of materials, geometry and thermal load are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure. Temperature, displacements and stress distributions through the cylinder at different times are investigated. Also the effects of variation of material distribution in two radial and axial directions on the thermal stress distribution and time responses are studied. The achieved results show that using 2D-FGM leads to a more flexible design so that time responses of structure, maximum amplitude of stresses and uniformity of stress distributions can be modified to a required manner by selecting suitable material distribution profiles in two directions.  相似文献   

19.
Summary  The present study analyzes elasto–plastic thermal stresses in some particle-reinforced functionally graded material plates (FGP) by taking into consideration residual stresses of the fabrication process. For the FGP, the region near the cooling metal surface consists of distributed ceramic particles in a metal matrix, while the region near the heating ceramic surface contains distributed metal particles in a ceramic matrix. We use the thermo–elasto–plastic constitutive equation of a particle-reinforced composite, taking into consideration temperature changes and damage as well as the reinforcing effect of particles. Elasto–plastic thermal stresses are discussed here with the goal of reducing the thermal stresses. Two kinds of particle-reinforced FGP are considered: the first kind (FGP1) represents distributed ceramic particles in the metal matrix, and the second one (FGP2) represents distributed metal particles in the ceramic matrix. We modify the thermo–elasto–plastic constitutive equation of a particle-reinforced composite for the FGP2 by taking into consideration temperature changes and damage as well as the reinforcing effect of particles. Using the temperature-dependent material properties, three cases of temperature conditions are studied. The first one is the cooling from the fabrication temperature to the room temperature, the second one is the heating from the room temperature, and the last one is the heating after cooling from the fabrication temperature. The particle volume fraction is assumed to vary according to a power function in the thickness direction of the FGPs. Using the finite element method, the effects of the distribution parameter of the composition on the macroscopic stress, the stress in the matrix and the stress in the particle in the FGPs are discussed. Also, the effects of the particle volume fraction and the fabrication temperature on the maximum tensile matrix stress are discussed. Received 22 November 2000; accepted for publication 24 April 2001  相似文献   

20.
The edge effect in layered composite material is studied using the piecewise-homogeneous body model and the exact equations of the theory of elasticity. It is assumed that continuously distributed normal forces act at the edges of the reinforcing layers. A plain strain state is considered and the stresses are expressed in terms of the solutions of a system of dual singular integral equations. The singularity of the stresses is determined by the solution procedure. The concentration of the reinforcing layers is assumed low and the interaction between them is not taken into account. A numerical algorithm is developed and numerical results on the stress distribution are presented Published in Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 134–144, April 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号