首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much recent work has been done on developing methods of solving gas-dynamic problems in which radiation plays a part (see, for example, [1–7]). This is because the temperature in the shock layer associated with flight in the atmosphere at hypersonic velocities can reach values exceeding 104 °K. In such a case, heat transfer by radiation can make an important contribution to the total heat transfer. With increasing flight velocities, the importance of radiation in heat transfer increases and then becomes predominant. In the present paper, the large-particle method as developed by Belotserkovskii and Davydov [8] is developed to calculate flows with radiation around blunt bodies, including the case when there is distributed blowing from the surface of the bodies into the shock layer, which simulates ablation of a heat-shielding covering under the influence of strong heating by radiation. The results are given of systematic calculations of flow past blunt bodies of various shapes by a stream of radiating air, and the results are compared with the data of other methods.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 106–112, July–August, 1982.  相似文献   

2.
The interaction of an electric arc with laminar hydrogen flow at a pressure of 100 atm is examined with account for the transverse flows. Results of calculations are presented for a current strength of 30 A and tube radius 0.3 cm. It is shown that for these parameters radiation plays the defining role in the heat transfer process.The electric arc in a gas stream without account for radiation has been studied previously in [1–4] and with account for radiation in [5]. However, in these studies only the longitudinal velocity component was taken into account in the energy equation.The authors wish to thank A. T. Onufriev for his interest in this study.  相似文献   

3.
Plasma flows in coaxial channels with a truncated central electrode are accompanied by compression and heating of the plasma on the channel axis [1–4]. Such flows were calculated in [1, 4] within the framework of a simple MHD model and by simple numerical methods and, accordingly, the results reflect only the basic qualitative characteristics of compression flows. Below, these flows are investigated in greater detail on the basis of a more accurate physical model with allowance for the finite conductivity, heat conduction and radiation of the plasma and impurities. The cases of anisotropic and classical isotropic heat conduction are considered. The numerical method employed is based on two finite-difference schemes: SHASTA-FCT [5–7] and TVD [8, 6]. The main advantage of these methods is the high resolution of the shock waves and contact discontinuities, which is highly desirable in describing compression flows. The calculations relate to the case of a fully ionized hydrogen plasma.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 102–109, May–June, 1991.In conclusion, the author wishes to express his gratitude to K. V. Brushlinskii and A. I. Morozov for frequent discussions and to K. P. Gorshenin for the use of his calculation results.  相似文献   

4.
A study is made in the linear formulation of flows with homogeneous distribution of the parameters in expanding regions separated by boundaries that are either discontinuity surfaces of an arbitrary nature or surfaces with effective boundary conditions. Examples of such flows are the decay of an arbitrary discontinuity [1] and flow in a tube with a region of heat release [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 10–18, September–October, 1982.We thank A. G. Kulikovskii for helpful discussions.  相似文献   

5.
Viscous incompressible laminar flow and heat transfer in channels with a small arbitrary deviation from a cylindrical surface are examined. A linear system of equations and boundary conditions for the disturbed dynamic and thermal fields, obtained by linearizing the complete system of Navier-Stokes equations with respect to the solution for developed flows in cylindrical tubes of arbitrary cross section, is presented. In the important practical case in which the perturbations of the channel surface are concentrated on an interval of finite length it is shown that the integral dynamic and thermal characteristics of the channel can be found without solving the three-dimensional equations by going over to effective two-dimensional boundary-value problems which are fundamentally no more difficult to solve than those for developed flows. Extensions of the theory to flows with low-efficiency power sources are given. Applications to plane channels and circular tubes with deformed surfaces are considered. Among the numerous applications requiring information about the integral characteristics of flows in channels whose initially cylindrical surface is slighty deformed, we note the problem of heat transfer intensification by slightly deforming the tube surface with careful estimation of the accompanying increase in resistance [1] and the calculation of the resistance of capillaries and biological transport systems in the form of tubes and channels when the walls are deformed [2]. Below we consider laminar flow in channels with deformed walls. Whereas for the first problem this class of flows is only one of those possible (in general it is necessary to analyze the transition, turbulence and flow separation effects), in the second case, which is characterized by low Reynolds numbers, the laminar flow model is perfectly adequate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 21–30, March–April, 1990.The authors are grateful to A. Yu. Klimenko for useful discussions.  相似文献   

6.
When bodies move in a liquid with inhomogeneous density in a gravitational field waves are excited even at low velocities and in the absence of boundaries. They are the so-called internal waves (buoyancy waves), which play an important part in geophysical processes in the ocean and the atmosphere [1–4]. A method based on the replacement of the bodies by systems of point sources is now commonly used to calculate the fields of internal waves generated by moving bodies. However, even so the problems of the generation of waves by a point source and dipole are usually solved approximately or numerically [5–11]. In the present paper, we obtain exact results on the spectral distribution of the emitted waves and the total radiation energy per unit time for some of the simplest sources in the two-dimensional case for an incompressible fluid with exponential density stratification. The wave resistance is obtained simply by dividing the energy loss per unit time by the velocity of the source. In the final section, some results for the three-dimensional case are briefly formulated for comparison.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 77–83, March–April, 1981.  相似文献   

7.
The method of contour dynamics is generalized for plane flows of a general form when, apart from vortices, distributed mass sources (or sinks) are present in the fluid. The laws of variation of the vorticity and divergence of the fluid particles with time are obtained for this case which makes it possible to use the method of contour dynamics for piecewise-constant vortex sink distributions.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–19, September–October, 1993.  相似文献   

8.
A characteristic feature of atmospheric vortices of a convective nature is the powerful radial motions of the medium at their base. In order to take these motions into account in analytical and numerical modeling, it is necessary to use point or distributed vortex sinks (vortex sources), which we will call helical vortices (from the shape of the streamlines of the flows produced) [1]. It seems likely that the interaction of point helical vortices was first considered in the until recently little-known study [2] which was included in the collection [3] and partially overlaps with the more recent studies [4, 5].Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 183–185, July–August, 1995.  相似文献   

9.
Ya. B. Zel'dovich has established [1] that in a continuous-flow reactor two ignition regimes are possible: forced ignition and autoignition.It is important to consider the special properties of the autoignition regime associated with the hydromechanics of laminar flow and heat transfer through the pipe wall. In [2, 3] it was shown that the effect of heat of friction on heat transfer in long pipes is qualitative in character. Moreover, according to Schlichting [4], in certain cases the temperature gradient for such flows due to the heat of friction may reach 10–30°, which is comparable with the preexplosion temperature rise in the stationary theory of thermal explosion [5]. In this connection it is clear that under certain conditions the heat of friction may considerably reduce the explosion limit.This paper is devoted to a study of the effect of heat of friction on the explosion limit of a reacting fluid in a long cylindrical pipe. The dynamic autoignition regime due to heat of friction is examined. In particular, it is established that, other things being equal, by increasing the pressure drop it is possible to obtain explosion of the reacting system.  相似文献   

10.
When a gas flows with hypersonic velocity over a slender blunt body, the bow shock induces large entropy gradients and vorticity near the wall in the disturbed flow region (in the high-entropy layer) [1]. The boundary layer on the body develops in an essentially inhomogeneous inviscid flow, so that it is necessary to take into account the difference between the values of the gas parameters on the outer edge of the boundary layer and their values on the wall in the inviscid flow. This vortex interaction is usually accompanied by a growth in the frictional stress and heat flux at the wall [2, 3]. In three-dimensional flows in which the spreading of the gas on the windward sections of the body causes the high-entropy layer to become narrower, the vortex interaction can be expected to be particularly important. The first investigations in this direction [4–6] studied the attachment lines of a three-dimensional boundary layer. The method proposed in the present paper for calculating the heat transfer generalizes the approach realized in [5] for the attachment lines and makes it possible to take into account this effect on the complete surface of a blunt body for three-dimensional laminar, transition, or turbulent flow regime in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 80–87, January–February, 1981.  相似文献   

11.
Many studies (for example, [1–5]) consider motion and heat transfer in closed vertical cavities with given different temperatures of the lateral boundaries. The majority of studies cover the case of convection, but of late studies have appeared (for example, [4]) in which joint radiative—convective heat transfer is taken into account. In the present study we consider motion and heat transfer in a rectangular cavity separating two media with given different temperatures. In contrast to [4], the temperature of the lateral boundaries is determined from the condition for interaction with the surrounding medium, and the air in the cavity is assumed to be transparent for the heat radiation of the walls. The problem considered is a mathematical model of the heat transfer through windows, and is necessary for the analysis of methods of improving the heat proofing of buildings.Translated-from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 25–30, 1987.  相似文献   

12.
The papers [1–5] are devoted to an investigation of aspects of the hydrodynamic interaction of cascades of profiles in a nonlinear formulation: it is shown experimentally in [1] and theoretically in [2] that the free vortex sheet ruptures upon meeting a profile; taking account of the evolution of vortex wakes, the flows around two cascades of solid profiles of infinitesimal [3] and finite [4] density are computed; results of an experimental investigation of the dynamic reactions of the flow on two mutually moving cascades of thin profiles are presented in [5]. The interference between two cascades of thin profiles in an inviscid, incompressible fluid flow is examined in this paper, where a modified method from [6] is used.Translated from Zhurnal Prikladnoi MekhaniM i Tekhnicheskoi Fiziki, No. 4, pp. 61–65, July–August, 1976.The author is grateful to D. H. Gorelov for discussing the research.  相似文献   

13.
It is known that steady flows arise beside a solid surface in the presence of a sound field which can to a certain extent exert an effect on the processes of heat and mass exchange [1–3]. As a rule, all papers from this area refer to the case in which one can represent the sound field in the form of a single wave. However, situations are often encountered in practice in which the sound field is complex; i.e., it consists of several vibrations whose amplitudes and frequencies are unlike in the general case. The secondary flows which form beside a circular cylinder placed in a complex soundfield are investigated in this paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 56–64, November– December, 1977.The author expresses his gratitude to V. A. Murga and I. I. Tyurlik for the computer calculations.  相似文献   

14.
The effect of solid particles on the flow stability and secondary regime branching in plane submerged jets is studied. The presence of the particles has an important influence on the macrostructure and microstructure of the jet flows, modifying the rate of turbulent momentum, heat and mass transfer [1,2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 50–55, May–June, 1985.The authors are grateful to V. N. Shtern for useful comments.  相似文献   

15.
The flow resulting from the collision of two spherically symmetric supersonic gas streams generated by three-dimensional sources has been studied within the framework of the inviscid perfect gas model. When the characteristics of both sources are the same, the problem reduces to that of the interaction between a spherically symmetric flow and a plane barrier [1, 2]. By means of a certain passage to the limit, the flow from one of the sources can be reduced to a uniform supersonic gas flow. In this case the problem reduces to the problem of uniform gas flow past a source considered in [1, 3, 4]. The resulting flows are investigated with reference to all the parameters characterizing the two sources. The shock wave structure, both in the neighborhood of and at points remote from the axis of symmetry, is studied, together with the distributions of the gas dynamic quantities in the shock layers; certain similarity laws are established. The astrophysical applications of the problem associated, in particular, with a certain x-ray radiation mechanism in binary stellar systems [5] are of particular interest.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 159–165, July–August, 1990.The authors are grateful to V. B. Baranov for his constant interest and to S. A. Zhekov and V. V. Usov for useful discussions.  相似文献   

16.
A consistent asymptotic theory of wall flow with film formation is constructed with reference to subsonic two-phase flow over a blunt body. The external flow problem and the film equations are solved simultaneously. This formulation of the problem supplements the investigation carried out in [4] in which particles deposited on the surface were assumed to disappear from the flow. It is shown that depending on the values of the governing parameters the flow in the film should be described either by the boundary layer equations or by the equations of creeping flow in a layer of unknown thickness. At the outer edge of the film the mass, momentum and energy fluxes found from the numerical solution of the flow problem are given. The case of isothermal film flow on the front of a sphere is investigated. The thickness of the film and the friction and heat transfer coefficients near the axis of symmetry are found for nonisothermal flows. The conditions under which the presence of a film significantly reduces the heat flow to the wall are determined. A similar formulation of the problem (but with another type of mass, momentum and energy sources at the outer edge) is encountered in problems of film condensation on a cold surface [5, 6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 85–92, July–August, 1989.  相似文献   

17.
This paper is a study of the effect of heat input (removal) on the characteristics of a shock layer produced by a gas at high supersonic velocity encountering a mobile boundary, which for generality is assumed to be free. We will use the Chernyi method, which was employed previously to solve the problem of a shock layer in an adiabatic flow [1, 2]. The results obtained can be useful for analysis of the effect of radiation (absorption) and processes involving the relaxation of internal degrees of freedom of molecules, condensation, chemical reactions, etc., whose effect on the gasdynamics of the flow in a shock layer may be similar to heat input or removal [3–5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 152–154, May–June, 1976.The author thanks A. K. Rebrov for discussion of the results.  相似文献   

18.
Difficulties in determining experimentally the local electrical parameters of unipolar-charged jets are arousing interest in the theoretical investigation of electrogasdynamic (EGD) flows. Free EGD jets were examined, for example, in [1–3]. In order to control the charge on the dielectric parts of aircraft surfaces, which results from their static electrification and may have certain negative consequences [4], and, moreover, to influence the flow in the boundary layer use is being made of unipolar-charged jets propagating near the dielectric [5, 6]. In [6] the case of an ion jet near a dielectric surface possessing surface conductivity was investigated. In these circumstances it is possible to neglect charge diffusion, which considerably simplifies the problem. Space charge diffusion was taken into account in [7], but subject to certain very important simplifications. The author has calculated the electrical parameters of a unipolar-charged jet propagating in a viscous incompressible gas near an ideal dielectric plate, with allowance for surface and polarization charges and, moreover, the diffusion processes near the surface. An asymptotic solution is obtained for the equations of the ionic diffusion layer as the ratio of the thickness of the diffusion layer to the thickness of the hydrodynamic boundary layer tends to zero.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 174–180, September–October, 1984.The author is grateful to V. V. Mikhailov and A. V. Kazakov for valuable advice and comments.  相似文献   

19.
The problem of interaction of gas-dust flows with solid surfaces arose in connection with the study of the motion of aircraft in a dusty atmosphere [1–2], the motion of a gas suspension in power generators, and in a number of other applications [3]. The presence of a disperse admixture may lead to a significant increase in the heat fluxes [4] and to erosion of the surface [5]. These phenomena are due to the joint influence of several factors — the change in the structure of the carrier-phase boundary layer due to the presence of the particles, collisions of the particles with the surface, roughness of the ablating surface, and so forth. This paper continues an investigation begun earlier [6–7] into the influence of particles on the structure of the dynamical and thermal two-phase boundary layer formed around a blunt body in a flow. The model of the dusty gas [8] has an incompressible carrier phase. The method of matched asymptotic expansions [9] is used to obtain the equations of the two-phase boundary layer. In the frame-work of the refined classification made by Stulov [6], it is shown that the form of the boundary layer equations is different in the presence and absence of inertial precipitation of the particles. The equations are solved numerically in the neighborhood of the stagnation point of the blunt body. The temperature and phase velocity distributions in the boundary layer, and also the friction coefficients and the heat transfer of the carrier phase are found for a wide range of the determining parameters. In the case of an admixture of low-inertia particles that are not precipitated on the body, it is shown that even when the mass concentration of the particles in the undisturbed flow is small their accumulation in the boundary layer can lead to a sharp increase in the thermal fluxes at the stagnation point.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–107, September–October, 1985.I thank V. P. Strulov for a discussion.  相似文献   

20.
During a space vehicle's entry into a planet's atmosphere at hypersonic speed one of the important problems is the aerodynamical surface heating due to convective and radiant heat fluxes from the gas after passing through a strong shock wave. Due to the high destructive action of this heating, an important problem is the selection of the aerodynamic shape allowing the minimum heat influx to its surface. The problem of determining the shapes of an axisymmetric body from the condition of minimum total convective heat flux along the lateral face of the body was considered under various assumptions in [1–7]. There are a number of entry conditions (for example, into the earth's atmosphere with a speed of 11 km/ sec at an altitude of about 60 km [12]) during which the radiative component becomes dominant in the total heat flux toward the body. A numerical solution of the problem of hypersonic flow of a nonviscous, non-heat-conducting radiating gas around a body is obtained at this time only for a limited class of bodies and primarily for certain entry conditions (for example, [8–12]). On the basis of these calculations it is impossible to make general conclusions concerning arbitrary body shapes. Therefore, approximate methods were proposed which permit the distribution of radiant heat flux to be obtained for an arbitrary axisymmetric body in a wide range of flight conditions [13–15]. In the present work an expression is derived for the total radiant heat flux over the entire body surface and similarity criteria are found. A variational problem is formulated to determine the shape of an axisymmetric body from the condition of minimum total radiant-heat flux over the entire body surface. It is solved analytically for the class of thin bodies and in the case of a strongly radiating gas.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 84–89, July–August, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号