首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HOF·CH3CN, a very efficient oxygen transfer agent, was reacted with various types of difficult-to-epoxidize olefins. All products were obtained in a single-step, fast and high yield reaction.  相似文献   

2.
Tal Harel 《Tetrahedron》2010,66(18):3297-7436
A variety of diazafluorenes and diazafluorenones were oxidized using the HOF·CH3CN complex to form the corresponding N,N′-dioxide derivatives under mild conditions. The products exhibit red-shift absorptions in the UV/visible spectrum relative to the parent compounds. Many such oxidations could not be achieved with any other oxygen-transfer agent.  相似文献   

3.
Diaryl- and dialkyl disulfides were oxidized in acetonitrile at 20 °C by CH3ReO3/H2O2 oxidant system to yield selectively the corresponding sulfonic acids in short reaction times and in high yields.  相似文献   

4.
Aromatic and aliphatic thiols are oxidized in acetonitrile at 20 °C by hydrogen peroxide in the presence of methyltrioxorhenium as the catalyst to yield the corresponding sulfonic acids in high isolated yields (85-94%).  相似文献   

5.
采用G3B3方法构建反式2-甲基-2-丁烯酸甲酯与O3反应体系以及后续Criegee自由基有、无水分子参与下异构化反应的势能面剖面.结果表明,反式2-甲基-2-丁烯酸甲酯与O3反应首先生成一个稳定的五元环中间体,此中间体按断键位置不同后续裂解反应存在两条路径,分别生成产物P1(CH3CHOO+CH3OC(O)C(CH3)O)和P2(CH3CHO+CH3OC(O)C(CH3)OO).利用经典过渡态理论(TST)并结合Wigner矫正模型计算了200-1200 K温度区间内标题反应的速率常数kTST/W.计算结果显示,294 K时,该反应速率常数为7.55×10-18cm3molecule-1s-1,与Bernard等对类似反应所测实验值非常接近.生成的Criegee自由基(CH3CHOO和CH3OC(O)C(CH3)OO)可分别与水分子发生α-加成及β-氢迁移反应,其中Criegee自由基与水的α-加成反应较其与水的β-氢迁移反应具有优势.另外与无水分子参与CH3CHOO和CH3OC(O)C(CH3)OO异构化反应相比,水分子的参与使得异构化反应较为容易进行.  相似文献   

6.
N,N-Dimethylhydrazones of aldehydes undergo a rapid oxidative cleavage to form nitriles in very high yields on reaction with HOF·CH3CN under mild conditions. The reaction is chemoselective and proceeds rapidly without racemization. The nitriles were resistant to further oxidation, even when a large excess of the reagent was employed.  相似文献   

7.
Ag-modified La0.6Sr0.4MnO3 catalysts were prepared and their catalytic performance for deep oxidation of CH4 and CH3OH at low concentrations were investigated. The results showed that the La0.6Sr0.4MnO3 host catalyst with the perovskite-type nano-crystallite structure displayed considerably high catalytic activity for deep oxidation of CH4 and CH3OH at low concentrations. Ag modification to the La0.6Sr0.4MnO3 host catalyst resulted in significant enhancement of the catalyst activity, making the T95 (the reaction temperature needed for conversion of 95%of CH4 or CH3OH) lowered down to 735K (for CH4) and 421K (for CH3OH) from 813 and 465 K over the Ag-free system under the reaction conditions:0.1MPa,CH4/O2/N2=2/12/86(molar ratio),GHSV=45000 h-1 and CH3OH/O2/N2= 0.2/1.0/98.8 (molar ratio),GHSV=58000 h-1,respectively.The carbon containing product was almost CO2 and the contents of HCHO and CO in the reaction exit gas were both under GC detectable limit in both cases.
The results of spectroscopic characterization indicated that modification by proper amount of Ag-dopant did not change the perovskite structure of the La0.6Sr0.4MnO3 host catalyst as a whole. Interaction of Ag-dopant with the surface of the host catalyst,La0.6Sr0.4MnO3,was in favor of high dispersion of the Ag component at the catalyst surface and led to the oxidation of part of the Mn3+species to Mn4+,resulting in an increase of amounts of the reducible Mnn+ species and a decrease of their reduction temperature. On the other hand, this interaction led also to enhancement of adsorption ability of the catalyst toward O2 at relatively low temperature. High activity of the Ag modified La0.6Sr0.4MnO3 catalyst for CH4 and CH3OH complete oxidation was closely related to high redox-activity of the catalyst and its prominent adsorption-activation ability to O2 at relatively low temperatures.  相似文献   

8.
在G3XMP2//B3LYP/6-311+G(3df,2p)水平上对CH3SO3裂解反应的机理进行了研究, 获得了6 条通道(10 条路径), 并构建了其势能剖面. 同时采用单分子反应理论计算了各个通道在温度200-3000 K区间的速率常数. 研究结果表明, 在计算温度范围内, CH3SO3裂解反应的主产物为P1(CH3+SO3), 产物P2(CH3O+SO2)和P3(HCHO+HOSO)仅在温度大于3000 K时对总产物有贡献, 而产物P4(CHSO2+H2O), P5(CH2SO3+H)和P6(CHSO3+H2)贡献相对较少. 将裂解反应总的速率常数拟合为ktotal=1.40×1012T0.15exp(7831.58/T). 此外, 根据统计热力学原理, 预测了所有物种的生成焓(DfHΘ298 K, DfH0 K), 熵(SΘ298 K)和热容(Cp, 298-2000 K), 计算的结果与实验值较接近.  相似文献   

9.
The selective oxidation of cyclopentene to cyclopentanone catalyzed by Pd(CH3COO)2-NPMoV was investigated under atmospheric oxygen in aqueous acetonitrile acidified by CH3SO3H. It was shown that the conversion of cyclopentene and the yield of cyclopentanone was nearly 100% and 94.6%, respectively, under the optimized reaction condition.  相似文献   

10.
The reaction mechanism of (CH3)3CO with CO has been theoretically investigated using density-functional theory (DFT) calculations at B3LYP/6-31G* level. In order to get more reliable energy values the single-point energy is evaluated at CCSD (T)/6-31++G** level. The results show that the reaction is multi-channel and the reaction of (CH3)3CO radical with CO mostly produces (CH3)3C + CO2. The reaction could play a role in eliminating air pollution.  相似文献   

11.
采用原位合成法制备了聚甲基丙烯酸甲酯包覆MAPbBr3纳米晶(MAPbBr3@PMMA,MA=甲铵离子)静电纺丝膜。当氨气(NH3)通入MAPbBr3@PMMA纤维膜时与MAPbBr3中的MA发生取代,能显著降低MAPbBr3@PMMA纤维的荧光强度,以此构建了基于MAPbBr3@PMMA纤维荧光猝灭的NH3传感器。通过扫描电镜、透射电镜、粉末X射线衍射和红外对静电纺丝膜的形貌和结构进行表征,通过紫外可见光谱、荧光光谱对其光学特性进行表征。结果表明,传感器的荧光强度与NH3浓度在8~90 mg·L-1之间呈现出良好的线性关系(r=0.995 9),NH3的检出限低(3 mg·L-1),且具有良好的重现性和选择性。在实际样品气体的测定中,加标回收率为92.2%~102.1%,相对标准偏差(RSD)为1.8%~3.2%。  相似文献   

12.
采用原位合成法制备了聚甲基丙烯酸甲酯包覆MAPbBr3纳米晶(MAPbBr3@PMMA,MA=甲铵离子)静电纺丝膜。当氨气(NH3)通入MAPbBr3@PMMA纤维膜时与MAPbBr3中的MA发生取代,能显著降低MAPbBr3@PMMA纤维的荧光强度,以此构建了基于MAPbBr3@PMMA纤维荧光猝灭的NH3传感器。通过扫描电镜、透射电镜、粉末X射线衍射和红外对静电纺丝膜的形貌和结构进行表征,通过紫外可见光谱、荧光光谱对其光学特性进行表征。结果表明,传感器的荧光强度与NH3浓度在8~90 mg·L-1之间呈现出良好的线性关系(r=0.995 9),NH3的检出限低(3 mg·L-1),且具有良好的重现性和选择性。在实际样品气体的测定中,加标回收率为92.2%~102.1%,相对标准偏差(RSD)为1.8%~3.2%。  相似文献   

13.
A variety of aromatic, aliphatic and conjugated aldehydes were converted to the corresponding carboxylic acid derivatives with 30% H2O2 as the oxidant in the presence of catalytic amounts of AgNO3. The method described has wide range of applicabilities, does not involve cumbersome work-up, exhibits chemoselectivity and proceeds under mild reaction conditions, and the resulting products are obtained in good yields within reasonable time.  相似文献   

14.
In this study, the oxidation of thiols to sulfonic acids and sulfides to sulfoxides and sulfones was carried out in the presence of Fe3O4/H2O2 as an efficient heterogeneous Fenton system. The products were obtained in good to excellent yields and short reaction times. Further results showed that the heterogeneous catalyst could be recovered easily using an external magnetic field and reused several times without any loss of its catalytic activity.  相似文献   

15.
A very simple procedure for the efficient oxidation of thiols to disulfides catalyzed by I2/CeCl3·7H2O in graphite and ethyl acetate as the solvent, in an open system at room temperature is described. The reaction proceeds cleanly under mild conditions and was performed with aromatic, aliphatic, and heterocyclic thiols.  相似文献   

16.
17.
The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH4 → CaOCH4 → [TS] → CaOH + CH3, CaO + CH4 → OCaCH4 → [TS] → HOCaCH3 → CaOH + CH3 or [TS] → CaCH3OH → Ca + CH3OH, and OCaCH4 → [TS] → HCaOCH3 → CaOCH3 + H or [TS] → CaCH3OH → Ca + CH3OH. The gas-phase methane–methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH3 and HCaOCH3, and the reaction pathway via the hydroxy intermediate (HOCaCH3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH3). The hydroxy intermediate HOCaCH3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH4. Meanwhile, these three product channels (CaOH + CH3, CaOCH3 + H and Ca + CH3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH3 and HOCaCH3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH3OH, which is precisely the reverse reaction of methane hydroxylation.  相似文献   

18.
A new magnesium borate, β-2MgO·3B2O3·17H2O, has been synthesized by the method of phase transformation of double salt and characterized by XRD, IR, and Raman spectroscopy as well as by TG. The structural formula of this compound was Mg[B3O3(OH)5]·6H2O. The enthalpy of solution of β-2MgO·3B2O3·17H2O in approximately 1 mol dm−3 HCl was determined. With the incorporation of the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(10256.39±4.93) kJ mol−1 of β-2MgO·3B2O3·17H2O was obtained. Thermodynamic properties of this compound was also calculated by group contribution method.  相似文献   

19.
An efficient and direct sulfonylation of aromatic compounds with sulfonic acids is described via mixed anhydrides in short reaction times using Tf2O in nitromethane at room temperature.  相似文献   

20.
The potential energy surface of O(1D) + CH3CH2F reaction has been studied using QCISD(T)/6-311++G(d,p)//MP2/6-311G(d,p) method. The calculations reveal an insertion–elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) atom inserting into C–F bond of CH3CH2F produces one energy-rich intermediate CH3CH2OF and another is the O(1D) atom inserting into one of the C–H bonds of CH3CH2F produces two energy-rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25 and 30 kcal/mol. CH3CH2O is the main decomposition product of CH3CH2OF. HF and CH3 are the main decomposition products for IM1; CH2OH is the main decomposition product for IM2. Since IM1 is more stable and more likely to form than CH3CH2OF and IM2, HF and CH3 are probably the main products of the O(1D) + CH3CH2F reaction. Our computational results can give insight to reaction mechanism and provide probable explanations for future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号