首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by melt blending and rapid quenching in ice water. The miscibility and thermal properties were investigated using differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA). The blend's morphologies were investigated using scanning and transmission electron microscopies. Both DSC and DMA results suggested that PTT and PC were very limited, partially miscible pairs. The melting point, melt crystallization, and cold crystallization exotherms in the blends of PTT were depressed by the presence and amount of PC. When the PC content was <50 wt%, PC spherical particles were found to distribute evenly in the PTT matrix; at 50–60 wt%, the two‐phase structures were close to being bicontinuous. At higher PC content, PTT formed a string‐like texture in the PC matrix. The PTT spherulitic morphologies in PTT/PC blends were found to be very sensitive to PC and PC content. When the PC content was ≥60 wt%, the blends crystallized as an agglomeration of tiny PTT crystals.  相似文献   

2.
The mechanical properties, morphology, and crystallization behavior of polycarbonate (PC)/polypropylene (PP) blends, with and without compatibilizer, were studied by tensile and impact tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The tensile and impact strengths of PC/PP blends decreased with increasing the PP content due to poor compatibility between the two phases. But the addition of compatibilizer improved the mechanical properties of the PC/PP blends, and the maximum value of the mechanical properties, such as tensile and impact strengths of PC/PP (80/20 wt%) blends, were obtained when the compatibilizer was used at the amount of 4 phr. The SEM indicated that the compatibility and interfacial adhesion between PC and PP phases were enhanced. DSC results that showed the crystallization and melting peak temperatures of PP increased with the increase of the PP content, which indicated that the amorphous PC affected the crystallization behavior. However, both the PC and compatibilizer had little effect on the crystallinity of PP in PC/PP blends based on both the DSC and XRD patterns.  相似文献   

3.
A polystyrene (PS)/polyamide 6 (PA6) (70/30, weight ratio) blend in the presence of terminal malic anhydride functionalized PS (FPS) and nano-TiO2 were prepared using a meltmixing technique. The morphology of the blend was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystallization behavior of the PA6 phase in the blend was studied using DSC techniques. The results showed that by adding 7.5 phr nano-TiO2, the size of the dispersed PA6 domains was dramatically decreased; An additional 1.5 phr FPS to the PS/PA6/TiO2 blend, for reactive blending, caused the size of the dispersed PA6 domain to become even smaller and more uniform, and a weak, broad crystallization exotherm of PA6 was observed. However, the degree of crystallinity of PA6 in PS/PA6/TiO2/FPS blend was sharply increased.  相似文献   

4.
Two kinds of blends of thermotropic liquid crystalline polymers (LCPs) and poly(ethylene terephthalate) (PET) were prepared by solution and melt blending, respectively. Crystallization behavior of the blends was observed by differential scanning calorimetry (DSC). The LCP in both blends considerably decreased the cold crystallization temperature of PET and increased the crystallization rate in the low-temperature region, but did not show any significant effect on crystallization in the high-temperature region. Phase behavior of samples prepared by melt blending was investigated with the scanning electronic microscope (SEM). It was found that LCP/PET blends display a biphasic structure with an aromatic unit-rich phase as a dispersed domain, and a highly oriented fibrous structure was formed on the fracture surface of the blends. During the melt blending process, PET reacted with LCP through transesterification, as indicated by both DSC and SEM measurements.  相似文献   

5.
The influence of malonic acid (MA) treatment of nano-calcium carbonate (CaCO3) on the crystallization, morphology, and mechanical properties of isotactic polypropylene (iPP)/nano-CaCO3 composites have been studied. The results of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM) show that untreated nano-CaCO3 facilitates the formation of α phase, while MA treated nano-CaCO3 increases the relative content of β phase of iPP dramatically. The results of scanning electron microscopy (SEM) show that MA treated nano-CaCO3 has better dispersion in the matrix than the untreated one. The toughness of PP/MA treated nano-CaCO3 composite is improved drastically. When 2.5 wt% MA treated nano-CaCO3 is added, the Izod notched impact strength reaches its maximum, which is 2.89 times greater than that of the pure iPP.  相似文献   

6.
Glycidyl methacylate functionalized acrylonitrile–butadiene–styrene particles (ABS-g-GMA) prepared via an emulsion polymerization method were used to toughen poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends. DMA results showed PBT was partially miscible with PC and the addition of ABS-g-GMA improved the miscibility between PBT and PC. DSC tests further testified that the introduction of ABS-g-GMA improved the miscibility of PBT and PC according to the Tm depression criterion. SEM displayed a very good dispersion of ABS-g-GMA particles in the PBT/PC blends and the dispersed phase size of PC decreased due to the compatibilization effect of ABS-g-GMA. The mechanical properties showed that the addition of 10 wt% ABS-g-GMA was sufficient to induce a super-tough fracture behavior to the PBT/PC blends and a notched impact strength of more than 1000J/m was achieved. The Vu-Khanh test showed that stable crack propagation took place for PBT/PC blends with the addition of ABS-g-GMA and led to ductile failure.  相似文献   

7.
A series of polyamide 6/hyperbranched polymers (PA6/HBP) blends with different HBP contents was prepared by melt processing using a twin-screw extruder. The HBP was synthesized on the basis of pentaerythritol and dimethyl terephthalate according to a one-step method. The melt flow behavior, crystallization behavior, morphology, and mechanical properties of the PA6/HBP blends were investigated. The results showed that the melt flow index of the blends was greatly improved by a small amount of HBP. The yield strength, tensile modulus, Izod impact strength, and flexural strength of samples were simultaneously enhanced from 54.6 MPa, 0.5 GPa, 3.8 kJ/m2, 56.9 MPa for pure PA6 to 61.1 MPa, 0.7 GPa, 5.3 kJ/m2, 67.1 MPa for PA6 blends with 2.0 wt% HBP, respectively. The PA6/HBP blends showed the higher content of α-form crystal and a higher degree of crystallinity than those of pure PA6.  相似文献   

8.
The crystallization behavior of poly(trimethylene terephthalate (PTT) in compatibilized and uncompatibilized PTT/polycarbonate (PC) blends are investigated in the research reported in this paper. The differential scanning calorimetry (DSC) results showed that the crystallization behaviors of PTT/PC blends were very sensitive to PC content. The onset (Tci) and the peak (Tc) crystallization temperatures shifted to lower temperatures whereas the area of the exotherm decreased quickly as the PC content was increased. The Avrami exponent, n, decreased from 4.32 to 3.61 as the PC content was increased from 0 to 20 wt %, and the growth rate constant, Z c , decreased gradually as well. This suggests that the nucleation mechanism exhibits the tendency of changing gradually from a thermal nucleation to an athermal mode although the growth mechanism still remains three‐dimensional. When epoxy (2.7 phr) was added as a compatibilizer during melt blending, the Tci and Tc shifted slightly to higher temperature (≤2°C), and the crystallization enthalpy, however, exhibited an increased crystallinity with the exception of the 90/10/2.7 phr PTT/PC/Epoxy. This suggests that the epoxy make a positive contribution to the PTT crystallization. Moreover, the influences of epoxy on the crystallization behaviors of PTT/PC blends are related to the epoxy content. By contrast, the compatibilizer of ethylene‐propylene‐diene copolymer graft glycidyl methacrylate (EPDM‐g‐GMA, ≤6.3 phr) had little effect on the crystallization behavior of PTT/PC blends. For PTT/PC/Epoxy (2.7 phr) blends, the Avrami exponent, n, decreased to near 3, while the growth rate constant, Z c , increased slightly as PC content was increased from 0 to 20 wt %. It is suggested that epoxy accelerated the process of the nucleation mechanism changing from thermal nucleation to an athermal mode. The EPDM‐g‐GMA had little effect on the nucleation mode and spherical growth mechanism. The PTT spherulite morphologies in PTT/PC blends were very sensitive to blend composition. Completely different morphologies were observed in pure PTT, PTT/PC, PTT/PC/Epoxy, and PTT/PC/EPDM‐g‐GMA blends.  相似文献   

9.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR vol%: 80/20) blends were prepared by melt mixing with various mixing rotation speeds. The effect of mixing technique on microstructure and impact property of blends was studied. Phase structure of the blends was analyzed by scanning electron microscopy (SEM). All of the blends had a heterogeneous morphology. The spherical particles attributed to the PcBR-rich phase were uniformly dispersed in the continuous iPP matrix. With increase of the mixing rotation speed, the dispersed phase particle's diameter distribution became broader and the average diameter of the separated particles increased. The spherulitic morphology of the blends was observed by small angle light scattering (SALS). Higher mixing rotation speed led to a more imperfect spherulitic morphology and smaller spherulites. Crystalline structure of the blends was measured by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The introduction of 20 vol% PcBR induced the formation of iPPβ crystals. Higher rotation speed led to a decrease in microcrystal dimensions. However, the addition of PcBR and the increase of mixing rotation speed did not affect the interplanar distance. The long period values were the same within experimental error as PcBR was added or the mixing rotation speed quickened. The normalized relative degree of crystallinity of the blends slightly increased under lower rotation speeds (30 and 45 rpm) and decreased under higher rotation speeds. The notched Izod impact strength of the blends was enhanced as a result of the increase of mixing rotation speed.  相似文献   

10.
Dynamically vulcanized blends based on polyvinylidene fluoride (PVDF)/acrylonitrile butadiene rubber (NBR) were prepared and characterized. The mixing torque and dynamic rheology analyses showed that the NBR phase increased the viscosity of the blends. Scanning electron microscopy (SEM) results showed that the NBR phase was in the form of spherical particles dispersed in the PVDF phase during dynamic vulcanization. Comparing PVDF-rich and NBR-rich blends, the size of the rubber particles in the NBR-rich blends were larger than those in PVDF-rich blends. Differential scanning calorimetry (DSC) results showed that the addition of the NBR phase reduced the PVDF crystallinity and Tm. Thermal gravimetric analysis (TGA) results showed that the dynamically vulcanized PVDF/NBR blends had a higher residual char mass than the neat PVDF and NBR. For PVDF-rich blends, the PVDF can be highly toughened by NBR; the Izod impact strength of the PVDF/NBR (70/30) blend was 77.5 kJ/m2, which was about six times higher than that of pure PVDF. For rubber-rich blends, the PVDF component was beneficial to the mechanical properties of the blends, which can be used as thermoplastic elastomers.  相似文献   

11.
Injection-molded β-isotactic polypropylene (β-iPP) was prepared with a commercial β-nucleating agent (NT-A). The effect of NT-A on the crystallization, mechanical properties, and heat resistance of β-iPP was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), polarized light microscopy (PLM), and mechanical and heat deflection tests. DSC and WAXD analysis showed that the content of β-crystals in the nucleated iPP was higher than that of pure iPP, and the content of β-crystals of the core was higher than that of the skin. PLM observations showed that injection-molded iPP had an obvious skin-core structure. NT-A induced abundant β-crystals and resulted in small spherulites which improved the Izod notched impact strength. When the content of NT-A was 0.075wt%, the Izod notched impact strength reached a maximum, 2.6 times more than that of pure iPP. The heat distortion temperature was also improved by NT-A.  相似文献   

12.
Pimelic acid (PA) was used as a new surface modifier for CaCO3. The effects of PA treatment on the crystallization, morphology, and mechanical properties of PP/CaCO3 composites were investigated. Fourier transform infrared (FTIR) spectroscopy analysis revealed that PA bonded to CaCO3 and formed a calcium pimelate surface layer after reacting with CaCO3. The results of wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarized light microscopy (PLM) proved that the PA treated CaCO3 induced a large amount of β -iPP and decreased the spherulitic size of PP. The results of scanning electron microscopy (SEM) showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between PP and CaCO3. The toughness of the composites was improved by the more ductile β -form spherulites. When 1% of PA treated CaCO3 was added, the notched impact strength reached its maximum, a value of 19.79 kJ/m2, which was 3.64 times greater than that of the pure PP.  相似文献   

13.
Nylon 6 (PA 6)/ethylene bis-stearamide (EBS)/SiO2- carboxylic acid-functionalized silica nanoparticles (COOH) composites were prepared by in-situ polymerization of caprolactam. SiO2-COOH was used to enhance the compatibility between SiO2 and PA 6 matrix. For comparison, pure PA 6 and PA 6/EBS composites were also prepared via the same method. The PA 6/EBS/SiO2-COOH composites with low content of EBS and SiO2-COOH had greater melt-flow index (MFI) (the value of MFI increased by 50%–80%) than the pure PA 6. The results of mechanical properties showed almost no decrease in the tensile strength of PA 6/EBS/SiO2-COOH composites, with the bending strength decreasing by 17%–21%. However, the Izod impact strength of the PA 6/EBS/SiO2-COOH composites was greatly improved compared with pure PA 6, which indicated that the toughness of PA 6/EBS/SiO2-COOH had been greatly improved. The morphology of Izod impacted fractured surfaces of PA 6/EBS/SiO2-COOH was observed by scanning electron microscopy. The results revealed that the PA 6/EBS/SiO2-COOH composites presented a typical ductile fracture behavior with large amounts of long and large strip-like cracks. When the content of SiO2-COOH was 0.2 wt%, the SiO2-COOH particles were uniformly dispersed over the entire body of the PA 6 matrix. The results from differential scanning calorimetry indicated that the melting point (Tm), degree of crystallinity (Xc), and crystallization temperatures (Tc) of PA 6/EBS/SiO2-COOH composites were lower than the pure PA 6.  相似文献   

14.
The reaction product EPDM-g-SAN, synthesized by suspension graft copolymerization of styrene (St) and acrylonitrile (AN) in the presence of ethylene-propylene-diene terpolymer (EPDM), was blended with a commercial styrene-acrylonitrile copolymer (SAN resin) to prepare AES blends with high impact strength. The effects of AN mass percentage in the St-AN comonomer mixture (f AN), EPDM mass percentage in the feed of EPDM and St-AN (f EPDM) and reaction time on monomer conversion ratio (CR), grafting ratio (GR), and AES notched Izod impact strength were characterized. The notched Izod impact strength of AES containing 15 wt% EPDM reached its maximum with f AN of 40 wt% and f EPDM of 45 wt%; this was attributed to the polarity of the SAN copolymer obtained being appropriate with that of the SAN resin matrix. The dependences of GR and the notched Izod impact strength of AES containing 25 wt% EPDM on the reaction time were in rough agreement. The effect of EPDM content on the AES notched Izod impact strength indicated that the brittle-ductile transition of AES occurred for an EPDM content from 12.5 to 15 wt%. TEM and SEM analysis showed that the phase structure of AES exhibited a “salami” like structure, and the toughening mechanism of AES was shear yielding of the SAN resin matrix, which endowed AES with excellent toughness.  相似文献   

15.
EPDM-graft-methyl methacrylate and styrene (EPDM-g-MS) were synthesized by solution graft copolymerization of methyl methacrylate (MMA) and styrene (St) onto ethylene-propylene-diene terpolymer (EPDM). EPDM-g-MS/MS resin blends (MES) tht were prepared by melt blending EPDM-g-MS and methyl methacrylate-styrene copolymer (MS resin). The mechanical properties, compatibility, thermal stabilities and rheological properties of MES were studied by the pendulum impact tester and the tension tester, differential scanning calorimetric (DSC), thermogravimetry analysis (TGA), and the capillary rheometry, respectively. The results showed that EPDM-g-MS had an excellent toughening effect on MS resin; the notched Izod impact strength of MES reached 20.7 kJ/m2 when EPDM content in MES was 25 wt%, about 14 times that of MS resin. EPDM-g-MS and MS resin were partially compatible, and the compatibility increased with an increasing MMA/St ratio of EPDM-g-MS. MES had excellent heat-resistance, which increased as the EPDM content in MES and MMA/St ratio of EPDM-g-MS rose. MES melt flow confirmed pseudoplastic flow characteristics. The apparent viscosity (η a ) of MES decreased with an increasing shearing rate (γ) and temperature, but increased with an increasing EPDM content in MES and MMA/St ratio of EPDM-g-MS. The flow activation energy of MES was lower than that of MS resin.  相似文献   

16.
The melting behaviors of poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends, compatibilized by epoxy, and PTT spherulite morphology in the blends were investigated. When epoxy was present during blending, the melting behaviors of PTT/PC blends changed substantially; glass transition temperatures (Tg's) and cold crystallization temperature (Tcc's) of the PTT‐rich phase shifted to higher temperatures, while Tm's shifted slightly to lower temperatures, indicating that epoxy suppressed considerably all processes of dynamic movements pertinent to molecular (or segmental) movements. The cold crystallization process responded sensitively to thermal history. Changes of Tcc's with composition suggested that the epoxy's compatibilization effect was pronounced when PTT and PC were in near equal content.

Recrystallization or reorganization exotherms appeared before melting for isothermally crystallized PTT/PC and PTT/PC epoxy (E) blends. A wide angle X‐ray diffraction (WAXD) analysis showed that, although the perfection of PTT crystallites was influenced either by PC content and the presence of compatibilizer or by the crystallization temperature and crystallization time, PTT's crystal structure was independent of these variables.

The polarized light microscopy (PLM) observations showed that PTT spherulite morphology was very sensitive to blend composition. Epoxy addition interfered severely with the growth of PTT spherulites, causing them to be much less developed. When the spherulites grew under a condition of varied composition, they would exhibit diversified spherulite morphology, though in one spherulite.  相似文献   

17.
Poly(butylene succinate-co-adipate) (PBSA)/poly (trimethylene carbonate) (PTMC) blend samples with different weight ratios were prepared by solution blending. The morphologies after isothermal crystallization and in the melt were observed by optical microscopy (OM). Differential scanning calorimetry (DSC) was used to characterize the isothermal crystallization kinetics and melting behaviors. According to the OM image before and after melting, it was found that the blends formed heterogenous morphologies. When the PTMC content was low (20%), PBSA formed the continuous phase, while when the PTMC contents was high (40%), PBSA formed the dispersed phase. The glass transition temperatures (Tg) of the blends were determined by DSC and the differences of the Tg values were smaller than the difference between those of pure PBSA and PTMC. In addition, the equilibrium melting points were depressed in the blends. According to these results, the PBSA/PTMC blends were determined as being partially miscible blends. The crystallization kinetics was investigated according to the Avrami equation. It was found that the incorporation of PTMC did not change the crystallization mechanism of PBSA. However, the crystallization rate decreased with the increase of PTMC contents. The change of crystallization kinetics is related with the existences of amorphous PTMC, the partial miscibility between PLLA and PTMC, and the changes of phase structures.  相似文献   

18.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

19.
The elastomeric chlorinated polyethylene (CPE) blended with a low melting point copolyamide (PA6/PA66/PA1010, PA) was prepared by a melt mixing technique. The mixing characteristics of the blends were analyzed from the rheographs. The influence of copolyamide (PA) content on the morphology, mechanical properties, crystallization and oil-resistance, and the addition of compatibilizers on the mechanical properties were also systematically investigated. Morphological examinations clearly revealed a two-phase system in which CPE/PA blends exhibit a cocontinuous morphology for 50/50 composition, and the continuous phase of PA turns into a disperse phase for 70/30, 80/20, and 90/10. There is a distinct interface between the two phases. The mechanical properties, crystallization, and oil-resistance have a strong dependence on the amount of PA. The blends with higher proportions of PA have superior mechanical properties; they are explained on the basis of the morphology of the blend and the cystallinity of PA. In addition, compatibilizers, including chlorinated polyethylene-graft-copolyamide (CPE-G-PA), chlorinated polyethylene-graft-maleic anhydride (CPE-G-MAH), ethylene-n-butyl acrylate-monoxide (EnBACO), and ethylene-n-butyl acrylate-monoxide-graft-maleic anhydride (EnBACO-g-MAH) were added into the blends. Tensile strength and elongation at break go through a maximum value at a compatibilizer resin content (on the basis of the total mass of the blend) of 20 wt% while the PA content is 30 wt%.  相似文献   

20.
Organic montmorillonite (MMT) reinforced poly(trimethylene terephthalate) (PTT)/ polypropylene (PP) nanocomposites were prepared by melt blending. The effects of MMT on the nonisothermal crystallization of the matrix polymers were investigated using differential scanning colorimetry (DSC) and analyzed by the Avrami equation. The DSC results indicated that the effects of MMT on the crystallization processes of the two polymers exhibited great disparity. The PTT's crystallization was accelerated significantly by MMT no matter whether PTT was the continuous phase or not, but the thermal nucleation mode and three-dimensional growth mechanism remained unchanged. However, in the presence of MMT, the PP's crystallization was slightly retarded with PP as the dispersed phase, and was influenced little with PTT as the dispersed phase. When the MMT content was increased from 2_wt% to 7_wt%, the crystallization of the PTT phase was slightly accelerated, whereas the crystallization of the PP phase was severely retarded, especially at lower temperatures. Moreover, the nucleation mechanism for the PP's crystallization changed from a thermal mode to an athermal one. In the polypropylene-graft-maleic anhydride (PP-g-MAH) compatibilized PTT/PP blends, with the addition of 2_wt% MMT during melt blending, the T c (PTT) shifted 7.8°C to lower temperature and had a broadened exotherm, whereas the T c (PP) shifted 17.1°C to higher temperature, with a narrowed exotherm. TEM analysis confirmed that part of the PP-g-MAH was combined with MMT during blending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号