共查询到4条相似文献,搜索用时 2 毫秒
1.
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied. 相似文献
2.
We consider problems in finite-sample inference with two-step, monotone incomplete data drawn from , a multivariate normal population with mean and covariance matrix . We derive a stochastic representation for the exact distribution of , the maximum likelihood estimator of . We obtain ellipsoidal confidence regions for through T2, a generalization of Hotelling’s statistic. We derive the asymptotic distribution of, and probability inequalities for, T2 under various assumptions on the sizes of the complete and incomplete samples. Further, we establish an upper bound for the supremum distance between the probability density functions of and , a normal approximation to . 相似文献
3.
4.
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 相似文献