首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The structure of gradient-porous (asymmetric) membranes based on polyamide imide at different conditions of their formation has been investigated using small-angle neutron scattering. It has been shown that the membranes consist of rigid porous networks with well-defined interfaces between the polymer and the pores. It has been found that there are differences in the packings of structural elements of porous membranes-spherical pores with radii from 4 to 100 nm—depending on the membrane preformation time, drying regime, and the presence of fullerene C60 for modifying the mechanical and selective properties of membranes. The membranes also contain larger pores of micrometer sizes. Differences in the rates of saturation of membranes with water and their limiting swelling ratios are found, which can be explained by the structure of the dense layers of membranes (skin layer) and their different hydrophilities (depending on the fullerene content).  相似文献   

2.
富勒烯-PVP聚合物链团结构的中子小角散射实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈波  夏庆中  V.T.Lebedev 《物理学报》2005,54(6):2821-2825
应用中子小角散射技术研究了水溶液中富勒烯-PVP聚合物的链团结构及其大小以及它们在不 同富勒烯含量下的变化.结果表明:当加入富勒烯后,不论是PVP单体分子链还是大分子链团 ,其相关长度与纯PVP溶液相比均变小,且大分子链团的变化更为明显;在不同富勒烯含量 情况下,高富勒烯含量的富勒烯-PVP分子链团的体积更小. 关键词: 中子小角散射 富勒烯 PVP聚合物  相似文献   

3.
The possibility to conduct the experiment on small-angle neutron scattering on very dilute magnetic fluids (the volume fraction of magnetite is ∼0.1%) is discussed. The aim of these experiments is to determine the structural parameters of these fluids using the Guinier approximation. Primary attention is concentrated on the experimental observation of a nonmagnetic layer on the surfaces of magnetic nanoparticles dispersed in a liquid carrier. Significant parameters are determined, and conditions for the experiment on the contrast variation are chosen in model calculations.  相似文献   

4.
A procedure for studying multiple small-angle neutron scattering using a double-crystal spectrometer is presented. It is based on measuring the linear coefficient of beam attenuation caused by smallangle scattering. The method has been substantiated theoretically, and the range of its applicability has been determined.  相似文献   

5.
Using coarse grained models of heterogeneous vesicles we demonstrate the potential for small-angle neutron scattering (SANS) to detect and distinguish between two different categories of lateral segregation: 1) unilamellar vesicles (ULV) containing a single domain and 2) the formation of several small domains or “clusters” (~10 nm in radius) on a ULV. Exploiting the unique sensitivity of neutron scattering to differences between hydrogen and deuterium, we show that the liquid ordered (lo) DPPC-rich phase can be selectively labeled using chain deuterated dipalymitoyl phosphatidylcholine (dDPPC), which greatly facilitates the use of SANS to detect membrane domains. SANS experiments are then performed in order to detect and characterize, on nanometer length scales, lateral heterogeneities, or so-called “rafts”, in ~30 nm radius low polydispersity ULV made up of ternary mixtures of phospholipids and cholesterol. For 1:1:1 DOPC:DPPC:cholesterol (DDC) ULV we find evidence for the formation of lateral heterogeneities on cooling below 30 °C. These heterogeneities do not appear when DOPC is replaced by SOPC. Fits to the experimental data using coarse grained models show that, at room temperature, DDC ULV each exhibit approximately 30 domains with average radii of ~10 nm.  相似文献   

6.
Internal structures of agar-gelatin co-hydrogels were investigated as a function of their volumetric mixing ratio, $\ensuremath r=[\mathrm{AG}]:[\mathrm{Ge}]=0.5Internal structures of agar-gelatin co-hydrogels were investigated as a function of their volumetric mixing ratio, [Formula: see text] , 1.0 and 2.0 using dynamic light scattering (DLS), small-angle neutron scattering (SANS) and rheology. The degree of non-ergodicity ( X = 0.2 ± 0.02) , which was extracted as a heterodyne contribution from the measured dynamic structure factor data remained less than that of homogeneous solutions where ergodicity is expected (X = 10. The static structure factor, I(q) , results obtained from SANS were interpreted in the Guinier regime (low-q , which implied the existence of ≈ 250 nm long rod-like structures (double-helix bundles), and the power law (intermediate-q regions) yielded I (q) ~ q(?α) with α = 2.3 , 1.8 and 1.6 for r = 0.5 , 1.0 and 2.0. This is indicative of the presence of Gaussian chains at low r , while at r = 2 there was a propensity of rod-shaped structures. The gel strength and transition temperatures measured from frequency sweep and temperature ramp studies were suggestive of the presence of a stronger association between the two biopolymer networks at higher r . The results indicate that the internal structures of agar-gelatin co-hydrogels were highly dependent on the volumetric mixing ratio.  相似文献   

7.
Polystyrene latexes with 40-60 nm diameter and molecular weights ranging from 6 × 104 to 6 × 106 g/mol were synthesized by a two-step equilibrium swelling method, with deuterated polymer forming either the first or second step. Below about 1 × 106 g/mol, small-angle neutron scattering gave zero-angle scattering intensities much higher than expected on the basis of gel permeation chromatography molecular weights. Several models were examined, the leading model based on a core-shell latex structure. The development of such structure was found to depend on the ratio of the radius of gyration of the polymer chain to that of the diameter of the latex particle, reaching a maximum in the range where the polymer chain dimensions are about half that of the latex particle. For the highest molecular weights, normal scattering intensities were found. These results lead to the finding that the polymer chains were compressed in the latex particles with constraining in the range of one to four, for this molecular weight range.  相似文献   

8.
Structural parameters of the magnetite-oleic acid-decalin magnetic fluid at various excesses of oleic acid (up to 25 vol %) have been determined using small-angle neutron scattering. Based on the comparison of the behavior of oleic acid in the magnetic fluid and in the pure solvent (decalin), it has been concluded that the interaction between the molecules of free (unadsorbed) surfactant changes in the presence of magnetic nanoparticles. However, the system remains stable and does not form aggregates of magnetic particles or free oleic acid. These results are compared with the previously presented data for similar benzene-based magnetic fluids.  相似文献   

9.
We applied a time-resolved small-angle neutron scattering technique to the vesicle system of dimyristoylphosphatidylcholine for the first time to determine lipid kinetics. The observed kinetics could be explicitly represented by a simple model that includes two independent kinetic parameters, i.e., the rates of transbilayer and interbilayer exchange. This technique is perfectly suited for the determination of lipid exchange kinetics in equilibrium and applicable to evaluation of the activity of the factors relevant to lipid migration, such as translocase and lipid transfer proteins.  相似文献   

10.
Small-angle scattering of neutrons from an Fe65Ni35 single crystal with an applied magnetic field parallel to each of 〈100〉, 〈110〉 or 〈111〉 has shown evidence for magnetocrystalline anisotropy.  相似文献   

11.
The nucleosome structure in native nuclei of normal (chicken erythrocyte and rat leukocyte nuclei) and anomalously proliferating (the human cervical adenocarcinoma cell line HeLa and the Chinese hamster fibroblast cell line A238) cells has been investigated using small-angle neutron scattering. The experimental results obtained allow one to make the inference that the parameters of the nucleosome structure for the chicken erythrocyte and rat leukocyte nuclei (on average over the nucleus) are close to the universally accepted values and that the distance distribution function is bimodal. The bimodality of the distance distribution function reflects a narrow distribution of distances between nucleosomes (on average over the nucleus) at the fibril level of the chromatin organization. The histone core of the nucleosome structure in the nuclei of the HeLa and A238 cells (on average over the nucleus) is considerably less compact than that in the chicken erythrocyte and rat leukocyte nuclei, and the distance distribution function does not exhibit indications of the bimodality.  相似文献   

12.
The analysis of the spatial structure of a rigid polyphenylene dendrimer G4-M of fourth generation by small-angle neutron scattering (SANS) is presented. This dendrimer is composed of phenyl units and is therefore devoid of any flexible unit. The scattering intensity of dilute solutions of the dendrimer was measured by SANS at different contrast which was adjusted by mixtures of protonated and deuterated toluene. Hence, the method of contrast variation could be applied and the data yield the scattering function extrapolated to infinite contrast. The comparison of this data with simulations demonstrates that the scaffold of the dendrimer is rigid as expected from its chemical structure. The positions of the various units setting up consecutive shells of the dendrimer are relatively well localized and the entire structure cannot be modeled in terms of spherically symmetric models. No backfolding of the terminal groups can occur and the model calculations demonstrate that higher generations of this dendritic scaffold must exhibit a dense shell and a congestion of the terminal groups. This finding is directly corroborated by recent solid-state NMR data. All results show that the rigid dendrimer investigated here presents the first example for a dendritic structure whose segment density does not have its maximum at the center. Rigid scaffolds are therefore the only way to achieve the goal of a “dense-shell” dendrimer whereas flexible scaffolds leads invariably to the “dense-core” case.  相似文献   

13.
The structures of several aqueous magnetic fluids stabilized by different combinations of surfactants have been compared using small-angle neutron scattering. The size distribution functions of colloidal particles in water have been determined. The degree of clustering of magnetic nanoparticles has been obtained from comparison with electron microscopy data. The combinations of surfactants that lead to a minimum clustering have been revealed.  相似文献   

14.
15.
We report small-angle neutron scattering measurements on the vortex lattice in a PbIn polycrystal in the presence of an applied current. Using the rocking curves as a probe of the distribution of current in the sample, we observe that vortex pinning is due to the surface roughness. This leads to a surface current that persists in the flux-flow region. We show the influence of surface treatments on the distribution of this current.  相似文献   

16.
Summary The aggregation behaviour of zinc-free insulin has been studied by small-angle neutron scattering as a function of protein concentration,pH, and ionic strength of the solution. The distance distribution functions for the 12 samples have been obtained by indirect Fourier transformation. The weight-averaged molecular mass and thez-averaged radius of gyration were determined. Both quantities vary systematically with the experimental conditions. They increase with decreasingpH and with increasing ionic strength. The radius of gyration scales as a power law of the weight-average mass with the exponent 0.44. A similar scaling is found for a set of oligomers structures based on the crystal structure of zinc-free insulin. The mass distribution between the oligomers was determined by a model based on these oligomers. The results from this model and the Fourier transformations have been compared to an equilibrium model recently introduced by Kadimaet al. The model takes into account the variation of the effective charge of the monomer withpH and ionic strength. The neutron scattering results agree well with the predictions of the model. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

17.
By means of small-angle neutron scattering the microstructure of two nanocrystalline Pd samples (prepared by inert gas condensation) has been studied at room temperature in a Q-range from [0pt] to [0pt] . An additional subsequent doping of the two samples with H as well as with D (concentrations < 4 at%) caused contrast variations that provided more detailed structural information. The measured scattering intensity was modeled by a Porod contribution from large heterogenities (e.g. pores) and a contribution from spherical grains with a log-normal distribution of their radii. To account for the presence of grain boundaries, the grains were considered to be surrounded by a shell with a reduced Pd density and a thickness half as large as the thickness of the grain boundaries. For the above model, the data of the H-doped, D-doped and undoped sample were simultaneously fitted with one single set of adjustable parameters. The fits yielded for the two samples volume-weighted mean grain radii of 10 nm and 13 nm. The values for the grain boundary thickness lie between 0.2 and 0.8 nm. Almost all of the H- and D-atoms are, at low hydrogen concentrations, located in the grain boundaries. Received 1 May 2000  相似文献   

18.
19.
Nanosized complexes of ferromagnetic particles with a photodithazine sensitizer (used in photo-dynamic therapy in oncology) have been synthesized and investigated using small-angle neutron scattering for the first time. The structure of the complexes has been determined, and the influence of the biocompatible polymer Pluronic on their structure has been analyzed. The possibilities of using the complexes for magnetically guided delivery of the photosensitizer to cells and tissues in the treatment of oncological diseases by photodynamic therapy have been discussed.  相似文献   

20.
We investigate experimentally, using small-angle neutron scattering the elastic properties of polymer-doped dilute lamellar phases. In our system the polymer is water-soluble but nevertheless partially adsorbs onto the negatively charged surfactant bilayers. The effective polymer-mediated interaction between bilayers is less repulsive than the weakly screened electrostatic interaction that prevails at zero polymer content. It even becomes attractive in some regions of the phase diagram. Small-angle neutron scattering allows us to measure directly the Caillé exponent η characterizing the bilayer fluctuations in lamellar (smectic A) phases, and thus indirectly estimate the compression modulus as a measure of the strength of the bilayer-bilayer interactions. The compression modulus appears to be vanishing at a point located on the lamellar-lamellar phase separation boundary, a candidate critical point. Received: 7 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号