首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical ionic conductivity of unirradiated and irradiated CaF2: Nd crystals in the range of 60 to 800°C has been measured. The conductivity plot is basically divided into four parts, i.e., intrinsic and extrinsic unassociated, extrinsic associated, and extrinsic segregated regions. Activation energy (for unirradiated samples) in the extrinsic unassociated region is in the range of 0.69 to 1.20 eV depending on the doping concentration while for the intrinsic region, it is of the order of 1.89 eV. The conductivity in the extrinsic unassociated region increases with increase of Nd content in the sample. Also, the conductivity in the extrinsic region forγ-irradiated sample is higher than that for unirradiated one. In the intrinsic region, however, the conductivity is independent of dopant concentration orγ-irradiation. From these results it is surmised thatF interstitials are the charge carriers in this region for CaF2: Nd3+ system.  相似文献   

2.
The superionic conductivity and dielectric response of heavily doped fluorite-structured Ba1−xRxF2+x (R=La, Pr, Nd, Gd, Tb, Y, Sc; x=0.005–0.45) crystals are reported. The highest ionic conductivity is found for R=Sc and x=0.1. Upon ScF3 doping, small Sc3+ ions rearrange their surroundings, create excessive fluoride interstitial ions and bring about a high ionic conductivity. For each dopant, the concentration dependence of the ionic conductivity is non-linear. A monotonous concentration dependence of the ionic conductivity is found only for La3+ doping. Upon doping with Nd3+, Gd3+, Tb3+, Y3+ and Sc3+ ions, a conductivity maximum is observed at x=0.1–0.2. Upon Pr3+ doping, this maximum is split. The influence of defect clustering on the concentration dependence of the conductivity is discussed. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

3.
The influence of polar dopant on the charge carrier transport in amorphous tris (8-hydroxyquinolinato) aluminum (Alq3) was studied by time-of-flight measurement. The 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) was doped into Alq3 with various concentration from 0.5 to 24 wt. %. The electron mobility was reduced by about one order by DCM doping in Alq3. The electric-field dependence electron mobility in Alq3:DCM films separated into two discrete regions of critical fields Ec 1/2. The value of Ec 1/2ranged from 360 to 405 (V/cm)1/2 depending on the DCM concentration in Alq3 films. The energetic disorder in Alq3:DCM films increased from 0.01 eV to 0.09 eV with DCM doping concentration. The positional disorder in Alq3:DCM films also increased from 0.3 to 6.5 with DCM doping concentration up to 24 wt. %. These results indicated the strong Coulombic and dipole–dipole interactions between DCM and Alq3 molecules. The interactions between randomly located DCM molecules, Alq3 dipoles and oriented dipoles are the major caused of positional disorder. PACS 73.50.-h; 73.61.Ph; 71.20.Rv  相似文献   

4.
The temperature dependence of the work function of silicon was measured in ultra high vacuum between room temperature and 1000°K by means of the temperature dependent contact potential between the silicon surface and a metal reference with the Kelvin method. We have investigated both (111)-surfaces of p-type silicon, cleaned by heating in vacuum, and cleaved surfaces of different doping. For stable surfaces, temperature coefficients between 0 and +1·10?4 eV/°K are found. Neither doping nor the transition of electrical conductivity from extrinsic to intrinsic has significant influence. This is due to the high density of surface states near the Fermi-energy. Freshly cleaved surfaces are unstable; when first heated up, an irreversible behaviour of the work function is observed, which gives some information concerning the surface states. From our measurements one can also roughly deduce the temperature dependence of the electron affinity. Finally, changes of the temperature dependence of the work function caused by contamination of the surface were investigated.  相似文献   

5.
Biodegradable polymer electrolyte comprising the blend of chitosan (CS) and poly(ethylene glycol) (PEG) plasticized with ethylene carbonate and propylene carbonate, as host polymer, and lithium perchlorate (LiClO4), as a dopant, was prepared by solution casting technique. The ionic conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The variation of conductivity and dielectric properties has been investigated as a function of polymer blend ratio, plasticizer content and LiClO4 concentration at temperature range of 298–343 K. The DSC thermograms show two broad peaks for CS/PEG blend and increased with increase in the LiClO4 content. The maximum conductivity has been found to be 1.1?×?10?4 S cm?1 at room temperature for 70:30 (CS/PEG) concentration. The electric modulus of the electrolyte film exhibits a long tail feature indicative of good capacitance. The activation energy of all samples was calculated using the Arrhenius plot, and it has been found to be 0.12 to 0.38 eV. A carbon–carbon supercapacitor has been fabricated using this electrolyte, and its electrochemical characteristics and performance have been studied. The supercapacitor showed a fairly good specific capacitance of 47 F?g?1.  相似文献   

6.
《Solid State Ionics》2006,177(19-25):1705-1714
The proton solubility and the hole conductivity of the rare earth doped ceria have been examined in their relations to the thermodynamic properties of doped ceria under the assumption that the hypothetical species, LnOOH and LnOO (Ln = Rare earth), can be regarded as constituents for representing protons and holes in the fluorite lattice. Focus is made on the dopant dependence, the host dependence and the temperature dependence in the rare earth doped zirconia(or ceria) fluorite lattice. The chemical potentials of the rare earth dopant are less stabilized in the ceria-based oxides than in the zirconia-based ones. The proton solubility in the ceria-based, zirconia-based, and ceria–zirconia solid solutions has been well interpreted in terms mainly of the hydroxidation energy and the stabilization energy of LnO1.5 in the fluorite lattice. Since the dopant dependence of the stabilization energy of LnO1.5 is stronger than the hydroxidation energy, the proton solubility becomes high in the smaller dopants. To account for less dopant-dependent behavior in the hole conduction, the peroxidation energy is assumed to have about the same dopant dependence as the stabilization energy. The calculated temperature dependences of proton solubility and hole concentration were compared with available experimental data; it has been suggested that holes and protons in ceria reach to saturation levels with lowering temperature. Some discussions are made on the possible explanation on recently observed anomalous hole conductivity in nano-size Ce0.8Gd0.2O1.9 in terms of plausible effects of miscibility gap, associated Gd enrichment, and simultaneous formation of Ce3+ and holes.  相似文献   

7.
Dc and ac measurements were performed on bulk samples of undoped and 15% Sb doped As2Se3 as a function of temperature (90–400 K) and frequency (103–106 Hz). The dc results show an activated conductivity dependence on temperature with an activation energy of 0.8 eV above room temperature. The ac results give a temperature dependent frequency exponent s. The temperature dependence of G ac is discussed in terms of the mechanisms involved. Results are compared with the predictions of the Quantum Mechanical Tunnelling and Correlated Barrier Hopping models. It is found that doping increases the dc conductivity but has no effect on the ac conductivity.  相似文献   

8.
ZnO and ZnO:Al films were deposited onto glass substrates by the sol gel method using spin coating technique. The effects of aluminum dopant on the crystalline structure and orientation of the ZnO films have been investigated by X-ray diffraction (XRD) study. Surface morphology of the films has also been analyzed by a field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The average optical transmittance values of all the films is over >83% in the visible region. The optical band gap and Urbach energy values of these films were determined. The absorption edge shifted to the lower energy depending on the Al doping level. The shift of absorption edge is associated with shrinkage effect. The electrical conductivity of the ZnO film enhanced with the Al dopant. From the temperature dependence of conductivity measurements, the activation energy of the films was also calculated.  相似文献   

9.
Nd+3+K+ doped ferroelectric lead germanate (LG) single crystals were grown to study the influence of the double dopants on ferroelectric behavior of LG. The crystals were grown by controlled cooling of the melt. Temperature variation of d.c. conductivity of the grown samples was studied in temperature range of 40-400 °C. Room temperature conductivity was enhanced as a result of doping. The existence of two activation energies, one in the ferroelectric phase (0.61 eV) and another in the paraelectric phase (0.77 eV) in the results, were revealed. The increase in conductivity due to doping is attributed to the generation of charge carriers due to double doping and the existence of two activation energies is attributed to the structural changes taking place at the ferroelectric transition temperature.  相似文献   

10.
The electronic structure and diffusion energy barriers of Li ions in pure and Mn-doped LiFePO4 have been studied using density functional theory(DFT).The results demonstrate clearly that Fe-O covalent bond is weaker than P-O covalent bond.Pure LiFePO4 has band gap of 0.56 eV and diffusion energy barrier of 2.57 eV for Li ions,while the dopant has small band gap of 0.25 eV and low diffusion energy barrier of 2.31 eV,which indicates that the electronic and ionic conductivity of LiFePO4 have been improved owing to doping.  相似文献   

11.
利用全势线性缀加平面波法,对Mg2Si的几何结构和电子结构进行了计算,得到了稳定的晶格参数以及能带和电子态密度.能带结构表明,Mg2Si为间接带隙半导体,禁带宽度为020 eV.在此基础上利用玻尔兹曼输运理论和刚性带近似计算了材料的电导率、Seebeck系数和功率因子.结果表明,在温度为700 K时p型和n型掺杂的Mg2Si功率因子达到最大时的最佳载流子浓度分别为7749×1019 cm-3关键词: 2Si')" href="#">Mg2Si 全势线性缀加平面波法 热电输运性质  相似文献   

12.
纳米管结构聚苯胺的电阻率和磁化率   总被引:4,自引:1,他引:4       下载免费PDF全文
研究了用自组装法制备的质子酸掺杂的纳米管结构聚苯胺的电阻率(ρ)和磁化率随温度变化的依赖关系,讨论了质子酸掺杂浓度、不同对阴离子以及苯胺单体与质子酸聚合时反应浓度对纳米管结构聚苯胺电学性质的影响.实验结果表明,lnρ和T-1/2呈线性关系,不同对阴离子对聚苯胺的电阻率影响很大,随着质子酸掺杂浓度以及苯胺单体与质子酸聚合时反应浓度的增大,聚苯胺的电阻率明显减小;而且,其磁化率可以表示为与温度无关的泡利顺磁性和符合居里定律的顺磁性之和.  相似文献   

13.
The current-voltage characteristics (CVC) at different temperatures, the temperature dependence of electric conductivity [σ(T)] and the currents of thermostimulated depolarization (TSD) have been studied in GaSe <0.05 at.% Co> on a combined basis.The location depth (Et=0.57eV) and the concentration of traps (Nt=2.7x1012cm?3) have been determined from the temperature dependence of the trapping factor. In the course of TSD investigations, levels with location depths of 0.28±0.02 and 0.57±0.03 eV have been revealed. It is noted that traps with the energy of 0.57±0.03 eV are found both with TSD measurements and on the basis of the temperature dependence of the electric conductivity and the trapping factor.It has been established that the hole centres above the valence band are responsible for the CVC, σ(T) and TSD. The location depths, concentrations and trapping cross-sections of these centres have been determined.  相似文献   

14.
Single crystals of triglycine sulphate (TGS) doped with n-bromo succinimide (NBS) were grown at ambient temperature by the slow evaporation technique. An aqueous solution containing 1-20 mol% of n-bromo succinimide as dopant was used for the growth of NBSTGS crystals. The incorporation of NBS in TGS crystals has been qualitatively confirmed by FTIR spectral data. The effect of the dopant on morphology and crystal properties was investigated. The cell parameters of the doped crystal were determined by the powder X-ray diffraction technique. The dielectric constant of NBS doped TGS crystal was calculated along the ferroelectric direction over the temperature range of 30-60 °C. The dielectric constant of NBSTGS crystals decrease with the increase in NBS concentration and considerable shift in the phase transition temperature (TC) towards the higher temperature observed. Pyroelectric studies on doped TGS were carried out to determine the pyroelectric coefficient. The emergence of internal bias field due to doping was studied by collecting P-E hysteresis data. Temperature dependence of DC conductivity of the doped crystals was studied and gradual increase in the conductivity with the increase of dopant concentration was observed. The activation energy (ΔE) calculated was found to be lower in both the ferroelectric and the paraelectric phases for doped crystals compared to that of pure TGS. The micro-hardness studies were carried out at room temperature on thin plates cut perpendicular to the b-axis. Less doped TGS crystals show higher hardness values compared to pure TGS. Piezoelectric measurements were also carried out on 010 plates of doped TGS crystals at room temperature.  相似文献   

15.
Electrical properties of calcia-doped ceria with oxygen ion conduction   总被引:3,自引:0,他引:3  
The electrical conductivity of sintered specimens of (CeO2)1−x(CaO)x was investigated by employing a standard four-probe dc technique as a function of temperature between 400°C and 900°C, composition from 0.10x0.80, and oxygen partial pressure from 10−18 to 1 atm. The temperature and composition dependence of the emf have been carried out with a concentration cell. X-ray diffraction studies indicated that a cubic fluorite crystal remained in all specimens studied, although the solubility limit of CaO in CeO2 was assumed to lie close to 23 mol% from the change of the lattice constant. The magnitude of the conductivity decreased slightly with increase of the dopant concentrations up to x=0.50. The conductivity of these specimens was about 100 times larger than that of calcia-stabilized zirconia at 600°C with a smaller activation energies of 0.83–0.89 eV. With further increasing dopant concentrations, the magnitude of the conductivity was found to decrease remarkably. With an increase in the dopant concentration, the domain of primarily ionic conduction extended to a lower partial pressure. The conductivity of (CeO2)0.50(CaO)0.50 was found to be primarily ionic down to 10−12 atm even at 900°C. These results indicate that CaO-doped CeO2 may be more an attractive candidate for fuel cells and other applications.  相似文献   

16.
《Current Applied Physics》2003,3(2-3):219-222
A temperature variation of dc conductivity in the range 77–300 K has been carried out in order to explore the mechanism of charge transport in polyaniline (PAN) doped with sulfuric acid. The variable range hopping (VRH) exponent changes as the transition of the PAN lattice takes place in a narrow pH range thereby indicating that the charge transport is crucially composition dependent. A decrease in activation energy has been observed as the doping level is increased. Spin concentration of charge carriers determined by electron spin resonance spectroscopy has also been found to depend on the doping level of the specimen. Polarons and bipolarons formed during the doping process are the charge carriers in this system. The temperature dependence of dc conductivity and activation energy data are indicative of existence of both VRH and mixed conduction for various doping levels in these samples.  相似文献   

17.
李世彬  肖战菲  苏元捷  姜晶  居永峰  吴志明  蒋亚东 《物理学报》2012,61(16):163701-163701
材料的载流子浓度和迁移率是影响器件性能的关键因素, 变温Hall测试结果证明杂质掺杂AlGaN中的载流子浓度和迁移率随温度 降低而减小.然而极化诱导掺杂的载流子浓度和迁移率不受温度变化的影响.以准绝缘 的GaN体材料作为衬底, 在组分分层渐变的AlGaN中实现的极化诱导掺杂浓度 仅仅在1017 cm-3数量级甚至更低. 本研究采用载流子浓度为1016 cm-3量级的非有意n型掺杂GaN模板为衬底, 用极化诱导掺杂技术在分子束外延生长的AlGaN薄膜材料中实现了高 达1020 cm-3 量级的超高电子浓度. 准绝缘的体材GaN半导体作衬底时, 只有表面自由电子作为极化掺杂源, 而非有意掺杂的GaN模板衬底除了提供表面自由电子外,还能为极化电场 提供更多的自由电子"源", 从而实现超高载流子浓度的n型掺杂.  相似文献   

18.
高电导a-Si:H:Y合金的电输运特性   总被引:2,自引:0,他引:2       下载免费PDF全文
本文报道由rf溅射技术将稀土元素Y掺入非晶硅,当掺Y浓度为20%左右时,获得了室温直流电导率为2×101Ω-1·cm-1的a-Si:H:Y合金膜。测量表明该合金膜是n型。变温电导测量指出,在测量温度范围内lnσ与l/T的关系可拟合于两条直线。对于衬底温度为260℃,290℃和330℃溅射的合金膜,其转折点分别出现在~70℃,~75℃和~90℃。这表明a-Si:H:Y合金膜存在两种电传导机制:在室温附近电子在Y施主杂质带内跳跃传导,在高温情况下电子在导带延展态内传导。并且得到Y施主杂质带中心处于导带Ec以下0.06—0.07eV。 关键词:  相似文献   

19.
We report on the structural, optical and dielectric characterization of solid state derived, pseudo-cubic nanoscale barium titanates (BTs) with gadolinium (Gd3+) as substitutional dopant. Referring to X-ray diffractograms, apart from the BT peaks related to perovskite structure, the non-existence of any additional peaks due to byproducts has revealed that Gd3+ has undergone substitutional doping into the BT host lattice. The well-separated BT nanoparticles of typical size ~10–15 nm were observed through electron microscopy studies. Following a direct, allowed type carrier transition (n=1/2), a reduction in the optical band gap value (from 3.28 to 3.255 eV) was observed when the Gd-doping level was varied within 0–7 %. Conversely, the Urbach energy followed an increasing trend, from a value of 0.741 to 1.879 eV. Furthermore, the dielectric constant showed a decreasing tendency with doping content and with increasing frequency. However, in the low-frequency region, the loss tangent (tanδ), which is the combined result of orientational polarization and electrical conduction, was found to be quite high in the doped samples as compared to their un-doped counterpart. The frequency-dependent electrical data were also analyzed in the framework of conductivity and impedance formalisms. In particular, the ac conductivity which varies as ~ω s approaches ideal Debye behavior (s→1) for a low Gd level and a higher doping concentration did not show improved dielectric feature of the host. The incorporation of rare-earth (Gd3+) ions into the BT host system could greatly manifest dielectric relaxation and carrier conduction mechanisms, in a given frequency range, and thus can find immense scope in miniaturized nanoelectronic elements including ceramic capacitors and transducers.  相似文献   

20.
The ionic conductivity of single crystals of the fluorite-structured solid solutions Ba1?xLaxF2+x(10?3 <×<0.45) has been studied as a function of temperature and composition in the range 300–900 K. Three regions can be discerned in the concentration dependence of the ionic conductivity: a dilute concentration region (x<10?3), where classic relations between solute content and ionic conductivity hold; an intermediate concentration region (10?3<x?5×10?2), where large changes occur in the conductivity activation enthalpy and the magnitude of the conductivity; and a concentrated solid solution region (x?5×10?2) characterized by enhanced ionic motion. In the dilute region the migration enthalpy for interstitial fluoride ions is determined to be 0.714 eV, while a value of 0.39 eV is found for the (LaBaFi)X association enthalpy. The defect chemistry in the intermediate concentration region is shown to be controlled by a superlinear increase of the concentration of mobile defects, while in the concentrated solid solution region a composition-independent amount of ≈1 mole% of interstitial fluoride ions with enhanced mobility, carry the current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号