共查询到18条相似文献,搜索用时 62 毫秒
1.
针对海量数据挖掘中三维模型特征识别准确率较低的问题, 提出一种改进的稀疏降噪自编码神经网络模型. 先基于改进的稀疏降噪自编码方法构建深度神经网络模型, 再利用无监督预训练方法及受限的拟牛顿计算方法对自编码神经网络进行训练, 最后采用softmax回归和得到的特征训练最终的分类器. 结果表明: 该方法对有噪声的三维模型特征信息具有较好的鲁棒性; 与栈式自编码神经网络和自学习神经网络相比, 该方法识别率较高. 相似文献
2.
在类肤色的复杂背景下,基于肤色检测的动态手势识别会因肤色干扰导致识别效率较低。提出了一种基于YCbCr颜色空间的改进三帧差分法的动态手势识别方法。首先利用改进的三帧差分法对动态手势进行分割,有效去除类肤色背景;然后根据人体肤色在YCbCr颜色空间中的聚类效果,采用基于椭圆模型的肤色检测方法有效去除非肤色背景,分割出手势区域。通过双特征提取,有效去除大范围的肤色背景,最终得到完整的手势;最后利用BP神经网络较强的自学习能力,对分割的动态手势进行检测识别。实验结果表明,此方法在应对环境变化时具有较好的实时性和抗干扰能力,拥有较高的识别率。 相似文献
3.
针对获取的手指静脉图像不仅包含静脉特征,而且包含噪声和不规则阴影,从而增加了特征提取难度的问题,提出了一种基于稀疏自编码的手指静脉图像分割算法;首先采用传统分割算法对原始灰度图像进行分割,得到一副二值图像(背景像素值为0,静脉像素值为1);然后,以该灰度图像的每个像素点为中心,对其进行图像分块,并将二值图像中对应于中心点的值(0或者1)作为该块的标签,建立训练集合;最后,将训练样本(分块图像和标签)输入到自编码器和神经网络中进行训练,再用训练好的模型对测试图像进行分割;实验结果表明,相比传统的算法,提出的手指静脉分割算法能够有效地对静脉进行分割,提高手指静脉认证系统的认证精度。 相似文献
4.
针对传统路面裂缝检测系统在复杂纹理背景噪声下检测效率低,易造成漏检、错检等现象提出了一种基于稀疏自编码的裂缝自动检测方法. 该方法首先采用一种基于各向异性的检测算法进行裂缝子块的初步筛选,经过稀疏自编码提取出特征后由softmax分类器进行训练和分类,最后由张量投票算法进行空间加强和去噪从而得到裂缝信息. 实验结果表明,文中提出的算法在无人工干预的情况下能够有效检测出图像裂缝区域,相比传统检测算法具有更高的检测精度和抗干扰能力. 相似文献
5.
传统手势识别方法需要人工选取特征,选取的特征往往很难适应手势的多变性,从而极大地影响了手势的识别率;提出了一种基于肤色特征和卷积神经网络的手势识别方法;首先采用椭圆肤色模型对复杂背景下的手势样本进行分割,将分割出的手势区域进行二值化和归一化处理,然后构建了一种卷积神经网络对处理过的手势样本进行迭代训练,提取出各类手势关键的高维特征,进而得出手势识别模型;通过该方法训练出的手势模型能够自主地对给定的手势图像进行特征提取和手势分类;实验表明:该手势识别方法在测试集上具有较高的识别率;在现实场景的测试中,该方法也取得了良好的手势识别效果,且实时性和鲁棒性较好。 相似文献
6.
针对现今煤岩图像识别方法的缺乏与不足,为了挖掘新的煤岩图像识别方法以及更好地处理高维煤岩图像数据,提出了基于最大池化稀疏编码的煤岩识别方法.本方法在提取煤岩图像特征时加入了池化操作,在分类识别时采用了集成分类器,即多个弱分类器组成一个强分类器.实验结果表明:最大池化稀疏编码的特征提取方式能简单有效表达煤岩图像的纹理特征,大大增强煤岩图像的可区分性,获得较高的识别率,并且具有良好的识别稳定性.研究结果可为煤岩界面的自动识别提供新的思路和方法. 相似文献
7.
针对交通安全中疲劳驾驶状态识别问题,使用单一的疲劳驾驶特征的方法识别率较低,本文提出一种基于面部多特征加权和的疲劳识别方法.通过人眼状态检测算法提取眼部疲劳参数,即持续闭眼时间、闭眼帧数比、眨眼频率,通过打哈欠状态检测得到打哈欠次数和打哈欠持续时间,通过头部运动状态分析得到点头频率,建立融合以上六个特征的驾驶疲劳状态检测模型来评估驾驶员的疲劳等级并进行相应的预警.实验测试数据选自NTHU驾驶员疲劳检测视频数据集的部分数据.经实验调整后,发现该方法的识别准确率较高,识别效果好. 相似文献
8.
针对手势识别中人手是复杂变形体,手部特征描述容易受到环境因素影响的特点,提出了一种基于傅立叶描述子-BP神经网络的手势识别方法.首先根据YCbCr和Nrg肤色模型的互补性以及背景模型有效去除复杂背景中的类肤色的特点,利用多特征相融合的手势分割方法提取手势区域;然后结合傅立叶描述子具有较好的轮廓描述能力和BP神经网络较强的自学习能力,利用傅立叶描述子-BP神经网络方法对手势进行识别.实验结果表明此方法具有较好的鲁棒性和较高的识别率. 相似文献
9.
基于稀疏编码和多核学习的图像分类算法 总被引:1,自引:0,他引:1
提出了一种基于稀疏编码和多核学习的图像分类算法.首先从图像中提取Dense-SIFT(Dense Scale Invariant Feature Transform)和Dense-SURF(Dense Speeded Up Robust Feature)2种特征,使用稀疏编码对特征点进行处理,得到一系列高维向量,然后对这些高维向量应用max-pooling算法,将图像表示成单个向量.最后,使用改进的多核学习方法对这些向量进行分类,对于不同的特征,使用不同核的组合以达到最好的分类效果.实验结果表明,该算法作为词袋(BoW)模型的改进,能够提高分类准确率.
相似文献
10.
为提高利用表面肌电信号(sEMG:Surface Electromyography)进行手势识别的准确率并解决其受不同提取特征影响的问题,提出了一种基于多路卷积神经网络(MB-CNN:Multi-Branch Convolutional Neural Networks)的手势识别方法.首先,使用MYO手环采集8种不同手... 相似文献
11.
12.
何明 《西南师范大学学报(自然科学版)》2019,44(7):81-86
为解决面部表情特征维度高的问题,该文提出了一种基于深度学习自编码器的表情识别新方法,该方法利用深度自编码器在多层隐层上进行特征选择,能够在较低维度上表示高维度的面部特征.首先采用定向梯度直方图从面部表情的选定区域提取特征,然后在多个层面上使用深度自编码器,得到最优编码特征,降低特征维度,最后使用支持向量机模型对降维特征进行分类.实验表明,与其他现有特征选择和降维技术相比,该文方法提取的特征优于其他特征,并能够有效实现面部表情识别. 相似文献
13.
随着虚拟环境的发展,人机交互中键盘远远不能满足人们的要求,本文提出了一种基于手势识别方法的智能输入算法.该算法采用肤色分割提取出手部区域,检测大拇指和伸出的手指数目识别出手势的含义,把各种手势组合起来实现智能输入.该算法能够使用户根据自己的习惯来定义手势,更好的实现人机交互.实验结果表明该算法对获取手势图片时的外界干扰具有一定的鲁棒性,并能达到较高的成功率. 相似文献
14.
基于彩色空间多特征融合的表情识别算法研究 总被引:1,自引:0,他引:1
目前的人脸表情识别方法大多是在灰度图像上采用单一特征算子,如 Local Phase Quantization(LPQ),Local Binary Patterns(LBP),Histograms Of Oriented Gradients(HOG),Gabor等,进行分类识别,但这类方法在复杂光照条件下识别率并不理想。为取得较好的识别率,本文首次提出了基于彩色图像多特征融合的表情识别算法。该算法首先在不同彩色分量上分别提取LPQ、LBP、HOG及Gabor多种特征,然后对高维特征进行线形鉴别分析并采用最近邻法进行表情分类,最后对多特征分类结果采用Adaboost算法进行融合。本文算法在具有复杂光照条件的Multi-PIE人脸库上进行了验证,取得了88.30%的平均识别率。实验结果表明:相比于基于灰度图像的单一特征识别算法,本文提出的算法能较大幅度地提高人脸表情识别率。 相似文献
15.
16.
针对人脸识别系统易受光照,表情与遮挡等因素的影响,提出一种基于局部分割的快速人脸识别算法。首先,建立高斯肤色模型,并融合几何特征快速实现人脸粗定位;然后,利用局部初次匹配与全局特征的方法排除背景环境对人脸检测的干扰以及减少匹配过程中的计算量,同时运用LBP算子对2D-Fr FT的幅度与相位特征的互补信息进行编码;最后,采用最近邻分类器进行分类识别。本文的方法在公共人脸图像数据库上进行仿真实验。结果表明,该算法简单、鲁棒性高、在速度与准确性方面具有良好的性能。 相似文献
17.
有效和鲁棒的手势跟踪是动态手势识别的前提,针对手势及其运动的特点,提出了结合Kalman滤波器和肤色模型的手势运动目标跟踪方法.首先通过背景差法和YCb’Cr’空间上的椭圆肤色模型检测出手部运动目标,通过目标区域的空间结构参数来设置Kalman滤波器的各项运动参数,然后计算空间结构特征的跟踪匹配函数对目标预测位置进行修正,获得运动手势目标区域及其运动轨迹.实验结果表明,所提方法能有效地跟踪手势,并能较好地适应手势在运动过程中的手形变化、轨迹转弯等情况,检测准确,鲁棒性高. 相似文献
18.
基于穿戴视觉的人手跟踪与手势识别方法 总被引:1,自引:0,他引:1
为了解决人与穿戴计算机的自然交互问题,提出了一种基于穿戴视觉的人手跟踪与手势识别方法.该方法以Icondensation算法为基础,综合利用穿戴视觉系统输出的深度和灰度信息进行人手跟踪,并引入了手势变换模型.该模型可以在几种预先定义的手势之间进行动态变换.实验结果表明,该方法可以有效地实现动态和复杂背景下的人手跟踪与手势识别,为穿戴计算机系统提供自然友好的手势交互途径. 相似文献