首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Mean and fluctuating wall shear stress is measured in strongly disrupted cases generated by various low-porosity wall-mounted single- and multi-scale fences. These grids generate a highly turbulent wake which interacts with the wall-bounded flow modifying the wall shear stress properties. Measurement methods are validated first against a naturally growing zero pressure gradient turbulent boundary layer showing accuracies of 1% and 4% for extrapolation and direct measurement of the mean shear stress respectively. Uncertainty associated with the root mean square level of the fluctuations is better than 2% making it possible to measure small variations originating from the different fences. Additionally, probability density functions and spectra are also measured providing further insight into the flow physics. Measurement of shear stress in the disrupted cases (grid+TBL) suggest that the flow characteristics and turbulence mechanisms remain unaltered far from the grid even in the most disrupted cases. However, a different root mean square level of the fluctuations is found for different grids. Study of the probability density functions seem to imply that there are different degrees of interaction between the inner and outer regions of the flow.  相似文献   

2.
Viscoelastic shear properties of human vocal fold tissues have been reported previously. However, data have only been obtained at very low frequencies (< or = 15 Hz). This necessitates data extrapolation to the frequency range of phonation based on constitutive modeling and time-temperature superposition. This study attempted to obtain empirical measurements at higher frequencies with the use of a controlled strain torsional rheometer, with a design of directly controlling input strain that introduced significantly smaller system inertial errors compared to controlled stress rheometry. Linear viscoelastic shear properties of the vocal fold mucosa (cover) from 17 canine larynges were quantified at frequencies of up to 50 Hz. Consistent with previous data, results showed that the elastic shear modulus (G'), viscous shear modulus (G"), and damping ratio (zeta) of the vocal fold mucosa were relatively constant across 0.016-50 Hz, whereas the dynamic viscosity (eta') decreased monotonically with frequency. Constitutive characterization of the empirical data by a quasilinear viscoelastic model and a statistical network model demonstrated trends of viscoelastic behavior at higher frequencies generally following those observed at lower frequencies. These findings supported the use of controlled strain rheometry for future investigations of the viscoelasticity of vocal fold tissues and phonosurgical biomaterials at phonatory frequencies.  相似文献   

3.
Single crystals of Fe and Fe-0·5 wt. % Si alloy were cyclically deformed to saturation. Internal stresses have been determined by stress relaxation and stress dip methods as a function of prior strain rate. The values of internal stresses are generally strain rate dependent and are systematically higher for the stress relaxation method. The physical meaning of strain rate independent internal stress obtained by extrapolation to zero strain rate is discussed.  相似文献   

4.
Results of experimental investigation of a bubbly gas-liquid flow in horizontal and weakly inclined (from −20° to +20°) flat channel are presented. These measurements were carried out within the 0.2–1 m/s range of superficial velocities and volumetric gas flow rate ratio of up to 0.2. The hydrodynamic structure was measured by the electrochemical method with application of wall shear stress and conductivity microprobes. During the experiments signals of shear stress on the upper channel wall and local gas flow rate ratio were recorded completely. After numerical treatment of recorded signals the profiles of local gas flow rate ratio were obtained, average shear stress and its relative mean square pulsations on the upper channel wall were determined. It is shown that under the studied regimes the bubbles are grouped into clusters, and the bubbly flow is presented by alternation of bubbly clusters and single-phase liquid with separate bubbles and without them. Average wall shear stress and absolute shear stress pulsations in the range of bubbly clusters and beyond them were determined. Histograms of probability density distribution were obtained for the wall shear stress on the upper wall. It is shown that average shear stress and absolute pulsations in clusters are significantly higher than those in the flow zone free from bubbles. The work was financially supported by the Russian Foundation for Basic Research (No. 07-08-00405a).  相似文献   

5.
D.K. Yi  J. Zhuang  I. Sridhar 《哲学杂志》2013,93(26):3456-3472
Elastic–plastic stress analysis has been carried out for the plastic zone size and crack tip opening displacement of a sub-interface crack with small scale yielding. In our study, the shape of plastic zone is assumed as a long, slim strip at both crack tips. In the plastic zone, both normal stress and shear stress exist and are considered due to the bi-material interface. The values of the plastic zone size, normal stress and shear stress are determined by satisfying the conditions where both Modes I and II stress intensity factors vanish and Von Mises yield criterion is met. In the present paper, the sub-interface crack is simulated by continuously distributed dislocations which will result in singular integral equations. Those singular integral equations can be solved by reducing them to a set of linear equations. The values of the plastic zone size and crack tip opening displacement are obtained through an iterative procedure. Finally, the effect of normalized loading, normalized crack depth (distance to the interface) and Dundurs’ parameters on the normalized plastic zone size and the normalized crack tip opening displacement is discussed.  相似文献   

6.
Unsteady flows of two immiscible Maxwell fluids in a rectangular channel bounded by two moving parallel plates are studied. The fluid motion is generated by a time-dependent pressure gradient and by the translational motions of the channel walls in their planes. Analytical solutions for velocity and shear stress fields have been obtained by using the Laplace transform coupled with the finite sine-Fourier transform. These analytical solutions are new in the literature and the method developed in this paper can be generalized to unsteady flows of n-layers of immiscible fluids. By using the Laplace transform and classical method for ordinary differential equations, the second form of the Laplace transforms of velocity and shear stress are determined. For the numerical Laplace inversion, two accuracy numerical algorithms, namely the Talbot algorithm and the improved Talbot algorithm are used.  相似文献   

7.
Sulfonated polyacrylamide (SPAA) solutions were prepared and the effects of pressure, polymer concentration, and water temperature, pH and salinity on their rheological behavior were investigated using a concentric cylinder dynamic rheometer equipped with a high pressure cell. According to the rheological flow curves the shear stress of SPAA solutions increased less than in proportion to their shear rates; that is, a shear thinning effect occurred. For polymer solutions containing 15,000 ppm of SPAA, shear viscosity, and stress were nearly insensitive to pressure. However, the shear viscosity and stress of SPAA solutions were affected by temperature and this effect was more evident at lower pressure. The flow curves indicated the shear viscosity and stress of the samples increased with increasing SPAA concentration and pH of the water, but were decreased with increasing water salinity and temperature.  相似文献   

8.
Greenwood MS  Adamson JD  Bond LJ 《Ultrasonics》2006,44(Z1):e1031-e1036
We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank.  相似文献   

9.
Dynamic strength behavior of Zr51Ti5Ni10Cu25Al9 bulk metallic glass(BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments.Particle velocity profiles measured at the sample/Li F window interface were used to estimate the shear stress,shear modulus,and yield stress in shocked BMG.Beyond confirming the previously reported strain-softening of shear stress during the shock loading process for BMGs,it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state,and both the shear modulus and the yield stress appear as strain-hardening behaviors.The work provides a much clearer picture of the strength behavior of BMGs under shock loading,which is useful to comprehensively understand the plastic deformation mechanisms of BMGs.  相似文献   

10.
This paper investigates the rheological effects of non-Newtonian fluids on the natural convection mechanism in a porous medium. A non-Newtonian behavior of power law fluid with a yield stress, saturating a porous medium, in which yield stress is temperature dependent, is considered. The cases of constant temperature boundary and constant heat flux boundary, along the heated vertical cylinder, are analyzed. The approximate similarity solutions in a closed form are shown, from which the velocity and temperature profiles are determined. The numerical solutions for a constant temperature boundary are also shown and discussed.  相似文献   

11.
《Physica A》2006,362(1):174-181
Lattice Boltzmann (LB) simulations are conducted to obtain the detailed hydrodynamics in a variety of blood vessel setups, including a prototype stented channel and four human coronary artery geometries based on the images obtained from real patients. For a model of stented flow involving an S-shape stent, a pulsatile flow rate is applied as the inlet boundary condition, and the time- and space-dependent flow field is computed. The LB simulation is found to reproduce the analytical solutions for the velocity profiles and wall shear stress distributions for the pulsatile channel flow. For the coronary arteries, the distributions of wall shear stress, which is important for clinical diagnostic purposes, are in good agreement with the conventional CFD predictions.  相似文献   

12.
We report measurements and modelling of magnetic effects due to plastic deformation in 2.2% Si steel, emphasizing new tensile deformation data. The modelling approach is to take the Ludwik law for the strain-hardening stress and use it to compute the dislocation density, which is then used in the computation of magnetic hysteresis. A nonlinear extrapolation is used across the discontinuous yield region to obtain the value of stress at the yield point that is used in fitting Ludwik's law to the mechanical data. The computed magnetic hysteresis exhibits sharp shearing of the loops at small deformation, in agreement with experimental behavior. Magnetic hysteresis loss is shown to follow a Ludwik-like dependence on the residual strain, but with a smaller Ludwik exponent than applies for the mechanical behavior.  相似文献   

13.
The shear viscosity and the normal stress coefficients are important parameters in the flow of polymer melts and polymer solutions. Based on the Leonov model, modified single-mode rheological equations are presented by introducing relaxation time and temperature functions, and the shear viscosity and the normal stress coefficients are predicted. Without a complex statistical simulation, the experimental data of a low-density polyethylene melt, a poly(ethylene oxide) solution and a mixed decalin/polybutene oil solution were compared to verify the modified equations in very wide range of deformation rates. Furthermore, based on the equations, the relationship between the stress overshoot and the temperature is discussed. In addition, the predicted shear thinning behavior for the modified equations is also compared with other single-mode models.  相似文献   

14.
We report on experimentally observed shear stress fluctuations in both granular solid and fluid states, showing that they are non-Gaussian at low shear rates, reflecting the predominance of correlated structures (force chains) in the solidlike phase, which also exhibit finite rigidity to shear. Peaks in the rigidity and the stress distribution's skewness indicate that a change to the force-bearing mechanism occurs at the transition to fluid behavior, which, it is shown, can be predicted from the behavior of the stress at lower shear rates. In the fluid state stress is Gaussian distributed, suggesting that the central limit theorem holds. The fiber bundle model with random load sharing effectively reproduces the stress distribution at the yield point and also exhibits the exponential stress distribution anticipated from extant work on stress propagation in granular materials.  相似文献   

15.
Molecular simulations are an important tool in the study of aqueous salt solutions. To predict the physical properties accurately and reliably, the molecular models must be tailored to reproduce experimental data. In this work, a combination of recent global and local optimization tools is used to derive force fields for MgCl2 (aq) and CaCl2 (aq). The molecular models for the ions are based on a Lennard-Jones (LJ) potential with a superimposed point charge. The LJ parameters are adjusted to reproduce the bulk density and shear viscosity of the different solutions at 1 bar and temperatures of 293.15, 303.15, and 318.15 K. It is shown that the σ-value of chloride consistently has the strongest influence on the system properties. The optimized force field for MgCl2 (aq) provides both properties in good agreement with the experimental data over a wide range of salt concentrations. For CaCl2 (aq), a compromise was made between the bulk density and shear viscosity, since reproducing the two properties requires two different choices of the LJ parameters. This is demonstrated by studying metamodels of the simulated data, which are generated to visualize the correlation between the parameters and observables by using projection plots. Consequently, in order to derive a transferable force field, an error of ~3% on the bulk density has to be tolerated to yield the shear viscosity in satisfactory agreement with experimental data.  相似文献   

16.
The off-shell pion-nucleon transition matrix is a basic ingredient in theories of pion-nuclear interactions which, in the absence of fundamental theory of πN dynamics, must be obtained by a phenomenological extrapolation from the available on-shell data. As one means of performing such an extrapolation, we explore a multichannel separable potential model with the property that the off-shell elastic scattering amplitude is generated directly from the measured elastic-channel phase shifts. The off-shell πN partial-wave transition amplitudes determined by this procedure are compared with those calculated by Landau and Tabakin using a one-channel absorptive separable potential. We find that the absorptive separable potential approach provides a physically unreasonable off-shell extrapolation at energies where the on-shell amplitude is highly inelastic, and show that the difficulty is a direct consequence of the one-channel nature of that method. The multichannel extrapolation is free of these difficulties.  相似文献   

17.
This paper presents an analysis of unsteady flow of incompressible fractional Maxwell fluid filled in the annular region between two infinite coaxial circular cylinders. The fluid motion is created by the inner cylinder that applies a longitudinal time-dependent shear stress and the outer cylinder that is moving at a constant velocity. The velocity field and shear stress are determined using the Laplace and finite Hankel transforms. Obtained solutions are presented in terms of the generalized G and R functions. We also obtain the solutions for ordinary Maxwell fluid and Newtonian fluid as special cases of generalized solutions. The influence of different parameters on the velocity field and shear stress is also presented using graphical illustration. Finally, a comparison is drawn between motions of fractional Maxwell fluid, ordinary Maxwell fluid and Newtonian fluid.  相似文献   

18.
The optical and rheological properties of different viscoelastic solutions of surfactant are studied in order to gather experimental data used to calculate the value of the stress optical coefficient C. Three surfactants of the same family (CTAB) have been chosen; they differ by the length of the hydrocarbon chain; it concerns the dodecyltrimethylammonium bromide (C15H34BrN or DoTAB), the myristyltrimethylammonium bromide (C17H38BrN or MyTAB), and the hexadecyltrimethylammonium bromide (C19H42BrN or CTAB). Different parameters like the temperature of the solution and the salinity of the solvent have been made to vary. Flow birefringence experiments and rheological measurements are performed on these solutions in order to study the dependence of the extinction angle , of the birefringence intensity and of the shear stress with the shear rate . These data are used to check the stress optical law which turns out to be valid in a wide range of shear rates. The stress optical coefficient C is then computed: it is found to vary with the salinity of the solvent and the temperature of the solution for a given surfactant. Then, for all solutions of this work the variations of C are related to the variations of the polarizability anisotropy and the persistence length. Received: 18 February 1998 / Revised: 23 June 1998 / Accepted: 22 July 1998  相似文献   

19.
Shear tests of an electrorheological fluid with pre-applied electric field and compression along the fleld direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful for developing high performance flexible ER or magnetorheological couplings.  相似文献   

20.
The constitution of blood demands a yield stress fluid model, and among the available yield stress fluid models for blood flow, the Herschel-Bulkley model is preferred (because Bingham, Power-law and Newtonian models are its special cases). The Herschel-Bulkley fluid model has two parameters, namely the yield stress and the power law index. The expressions for velocity, plug flow velocity, wall shear stress, and the flux flow rate are derived. The flux is determined as a function of inlet, outlet and external pressures, yield stress, and the elastic property of the tube. Further when the power-law index n = 1 and the yield stress τ 0 → 0, our results agree well with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Furthermore, it is observed that, the yield stress and the elastic parameters (t 1 and t 2) have strong effects on the flux of the non-Newtonian fluid flow in the elastic tube. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号