首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Colon-targeted capecitabine beads were formulated by an ionotropic gelation method. The sodium alginate to pectin ratio and chitosan concentration were optimized using a 32 full factorial design. Analysis of response surface plots allowed the identification of an optimized formulation with high drug entrapment and controlled release. Insignificant differences in observed and predicted values for responses validated the optimization method. Optimized beads possessed an average diameter of 1395 µm and good flow properties. Their production as spherical beads having a smooth surface was confirmed by scanning electron microscopy. Fourier transform infrared spectroscopy revealed the compatibility of drug with added excipients, while differential scanning calorimetry study confirmed complete drug entrapment in polymer matrix. Higher swelling of beads in phosphate buffer pH 7.4 was obtained in comparison to pH 6.8. An in vitro wash off test indicated 70% mucoadhesion by the beads. In vitro dissolution studies of beads loaded into enteric-coated capsules revealed negligible release in simulated gastric and intestinal fluid, followed by 49.23% release in simulated colonic fluid, in 4 h. The optimized beads were found to be stable for three months at 25 ± 2°C/60 ± 5% RH. In conclusion, the formulated beads showed colon-specific controlled release properties, and thus could prove to be effective for colon cancer treatment.  相似文献   

2.
Microspheres of blends of sodium alginate (NaAlg) and sodium carboxymethyl cellulose (NaCMC) were prepared by a water-in-oil (w/o) emulsion crosslinking method and used for the release of donepezil hydrochloride (DP), which is an Alzheimer's drug. The microspheres were characterized with Fourier transform infrared spectroscopy (FTIR), differantial scanning calorimetry (DSC), and scanning electron microscopy (SEM). The microsphere characteristics, including DP entrapment efficiency, particle size, equilibrium swelling degree (ESD), and DP release kinetics, were determined. The effects of the preparation conditions, including the NaAlg/NaCMC (w/w) ratio, drug/polymer (w/w) ratio, cross-linker concentration and time of exposure to the cross-linker, on the release of DP were investigated for successive gastrointestinal tract pH values of 1.2, 6.8, and 7.4 at 37°C. The release of DP increased with the increase in NaAlg/NaCMC (w/w) ratio and drug/polymer (d/p) ratio, while it decreased with increasing extent of cross-linking. The optimum DP release was obtained as 99.13% for a NaAlg/NaCMC (w/w) ratio of 2/1, d/p ratio of 1/4, CaCl2 concentration of 5% and crosslinking time of 30 min. It was also observed from release results that DP release from the microspheres through the external medium was higher at low pH (1.2) values than that at high pH (6.8 and 7.4) values. The DP release of the microspheres followed either Fickian transport below a value of n < 0.5 or anomalous transport (n = 0.5–1.0).  相似文献   

3.
Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly(ε-caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process.  相似文献   

4.
Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ~30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ~63.61 % while those prepared through propanol-induced drying step showed ~69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.  相似文献   

5.
In this paper, the monodisperse silica nanoparticles were prepared by ultrasonic-assisted Stober method, and it explained that the ultrasonic cavitation effect shortened the reaction time from the original hours to f5 min. The effects of ultrasonic time, ultrasonic power, and stirring speed on the morphology, composition, and specific surface area of silica nanoparticles were investigated by field emission electron microscopy (FE-SEM). The results showed that nanoparticles with the best dispersity and the most uniform morphology were obtained under the optimized conditions (ultrasonic time is 5 min, ultrasonic power is 160 W, and the magnetic stirring speed is 999 rpm). The phase composition of SiO2 was characterized by high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), nano-size/zeta potential analyzer, and Fourier transform infrared spectroscopy (FT-IR). It showed that all typical peaks of samples are in line with the SiO2 spectrum, the particle size distribution and zeta potential value of the silica is 615?±?35.6 nm and 59.87?±?0.91 mv, respectively, which further verified that the spherical silica nanoparticles with good dispersity can be synthesized in a very short time. Hemolysis test showed that nano-SiO2 had high blood compatibility and biocompatibility when its concentration was less than 1 mg/mL. Doxorubicin (DOX·HCl) was regarded as a drug model to investigate the drug loading capacity of synthesized SiO2; the results showed that the drug loading capacity and encapsulation efficiency reached 42.6?±?1.2 and 85.2?±?2.5%, respectively. Furthermore, the drug release experiments fitted well with the Higuichi equation with correlation coefficient (R2) of 0.9984, which further confirmed that the SiO2/DOX drug delivery system has the controlled release property, and it also displayed pH-responsive behavior (at 96 h, the cumulative release of SiO2/DOX in PBS solution with pH 7.4, 6.5, and 5.0 was 48.33, 62.31, and 94.86%, respectively). Therefore, this paper provides the possibility for developing more effective, safer, and more targeted controlled drug carriers.  相似文献   

6.
Iron oxide (α-phase) nanoparticles with coercivity larger than 300 Oe have been fabricated at a mild temperature by an environmentally benign method. The economic sodium chloride has been found to effectively serve as a solid spacer to disperse the iron precursor and to prevent the nanoparticles from agglomeration. Higher ratios of sodium chloride to iron nitrate result in smaller nanoparticles (19 nm for 20:1 and 14 nm for 50:1). The presence of polyvinyl alcohol (PVA) limits the particle growth (15 nm for 20:1 and 13 nm for 50:1) and favors nanoparticle dispersion in polymer matrices. Obvious physicochemical property changes have been observed with PVA attached to the nanoparticle surface. With PVA attached to the nanoparticle surface, the nanoparticles are found not only to increase the PVA cross-linking with an increase in melting temperature but also to enhance the thermal stability of the PVA. The nanoparticles are observed to be uniformly dispersed in the polymer matrix. Scanning electron microscopy (SEM) microstructure also shows an intermediate phase with a strong interaction between the nanoparticles and the polymer matrices, arising from the hydrogen bonding between the PVA and hydroxyl groups on the nanoparticle surface. The addition of nanoparticles favors the cross-linkage of the bulk PVA matrices, resulting in a higher melting temperature, and an enhanced thermal stability of the polymer matrix.  相似文献   

7.
In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150–180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.  相似文献   

8.
Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core–shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core–shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.  相似文献   

9.
OBJECTIVE: The objective of this study was to use magnetic resonance imaging (MRI) to detect the time when and the location at which orally delivered mucoadhesive drugs are released. MATERIALS AND METHODS: Drug delivery systems comprising tablets or capsules containing a mucoadhesive polymer were designed to deliver the polymer to the intestine in dry powder form. Dry Gd-DTPA [diethylenetriaminepentaacetic acid gadolinium(III) dihydrogen salt hydrate] powder was added to the mucoadhesive polymer, resulting in a susceptibility artifact that allows tracking of the application forms before their disintegration and that gives a strong positive signal on disintegration. Experiments were performed with rats using T(1)-weighted spin-echo imaging on a standard 1.5-T MRI system. RESULTS: The susceptibility artifact produced by the dry Gd-DTPA powder in tablets or capsules was clearly visible within the stomach of the rats and could be followed during movement towards the intestine. Upon disintegration, a strong positive signal was unambiguously observed. The time between ingestion and observation of a positive signal was significantly different for different application forms. Quantification of the remaining mucoadhesive polymer in the intestine 3 h after observed release showed significant differences in mucoadhesive effectiveness. CONCLUSION: MRI allows detection of the exact time of release of the mucoadhesive polymer in vivo, which is a prerequisite for a reliable quantitative comparison between different application forms.  相似文献   

10.
Acrylate and methacrylate monomers absorbent acrylate foams were prepared based on the method of high internal phase emulsion (HIPE). The influence of reaction conditions on liquid absorption by acrylate foams was studied. The reaction conditions included monomer ratio, cross-linker amount, initiator amount, emulsifier amount, emulsion concentration, emulsification temperature, and the curing time. The reaction conditions were determined to achieve the best liquid absorption by acrylate foams. Acrylate foams were analyzed with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that when the monomer ratio was 9:1, cross-linking agent was 30% of monomer amount, initiator amount was 4% of the reactants amount, emulsifier amount was 8% of the reactants amount, the ratio of aqueous phase to oil phase was 32:1, emulsification temperature was 75°C, and curing time was 1.5 h, we could prepare the acrylate foam material with the best liquid absorption. Reaction of monomer and cross-linking agent was confirmed by FTIR analysis. The pore sizes of acrylate foam were between 1 μm and 8 μm according to SEM analysis. This material was very suitable to absorb aqueous fluids.  相似文献   

11.
A highly sensitive and simple spectrofluorimetric method was developed for the determination of cyproheptadine hydrochloride (CYP) in its pharmaceutical formulations. The proposed method is based on the investigation of the fluorescence spectral behaviour of CYP in a sodium dodecyl sulphate (SDS) micellar system. In aqueous solution, the fluorescence intensity of CYP was greatly enhanced (150 %) in the presence of SDS. The fluorescence intensity was measured at 410 nm after excitation at 280 nm. The fluorescence–concentration plot was rectilinear over the range 0.2–2.0 μg/mL, with lower detection limit of 0.06 μg/mL. The proposed method was successfully applied to the assay of commercial tablets as well as content uniformity testing. The application of the proposed method was extended to test the in-vitro drug release of CYP tablets, according to USP guidelines. The results were statistically compared with those obtained by official USP method and were found to be in good agreement.  相似文献   

12.
A study was carried out to investigate the solute permeability of various polymer films applied on aspirin crystal to form microcapsules. The coating materials were an acrylate methacrylate (AMA), poly 3‐hydroxybutyrate‐hydroxyvalerate (Biopol®) and poly (lactic‐glycolic) acid (PLGA). Organic solutions of the polymers were applied on the aspirin crystals (core) by a spray coating technique in a Wurster column. The microcapsule surfaces were investigated using scanning electron microscopy (SEM), while permeability studies were carried out on single microcapsules serving as micro dialysis cells. The amount of drug (m) permeating through the applied films in time (t) was analysed on the basis of Fickian diffusion. The SEM revealed numerous surface pores of size range 2.4 to 24 μm for the AMA films, while the PLGA and Biopol films, on the other hand, exhibited very few surface pores of size range 2.2 to 18 μm. However, the AMA films were more spongy than the PLGA and Biopol. The AMA films displayed a retarded release while the PLGA or Biopol films displayed a burst release, attributable to the differences in the film's porous structure. The Permeability coefficient (P) depended on the core weight of the single microcapsules, decreasing with increase in core weight. Thus, for an ensemble of the microcapsules the permeability coefficients of the films of the component microcapsules will have a distribution of P values even though the coating material is the same. This finding is important in the simulation of drug release from coated multiparticulate systems.  相似文献   

13.
Polyurethane (PU) hydrogel is an important biomedical material for drug controlled release systems, wound dressings and medical bandages. Three series of polyurethane prepolymers based on methylene diphenyl diisocyanate (MDI), polycaprolactone (PCL) and polyethylene glycol (PEG), using diethylene glycol (DEG), N-methyldiethanolamine (MDEA) or dimethylolpropionic acid (DMPA), as the chain-extender, were prepared. Then the polyurethane hydrogels were obtained from the prepolymers, using benzoyl peroxide (BPO) as a cross-linking agent, by free radical polymerization. The influences of the types of chain-extenders and polyols on the contact angle, swelling ratio and morphology of the polyurethane hydrogels were investigated. The effect of the variety of the chain-extenders in the PU hydrogel on the drug release behavior was also studied. The FT-IR results showed that the PU hydrogels were successfully synthesized. The introduction of PEG improved the hydrophilicity of the PU hydrogels. The MDI/PCL-PEG/DEG hydrogel was hydrophobic, and there were small micropores on its surface; while the MDI/PCL-PEG/DMPA and MDI/PCL-PEG/MDEA hydrogels had high hydrophilicity and a micropouous structure on their surface due to the existence of carboxyl and tertiary amino functional groups. The change of chain-extenders had no significant effect on the cumulative drug release of chloramphenicol from the PU hydrogels. However, the introduction of PEG increased the drug release rate. The chloramphenicol release kinetics from the MDI/PCL-PEG hydrogels indicated non-Fickian diffusion.  相似文献   

14.
Hollow core-shell silica nanoparticles (HCSNs) are being considered as one of the most favorable drug carriers to accomplish targeted drug delivery. In the present study, we developed a simple two-step method, employing polystyrene (PS) nanoparticles (150?±?20 nm) as a sacrificial template for the synthesis of microporous HCSNs of size 230?±?30 nm. PS core and the wall structure directing agent cetyl trimethyl ammonium bromide (CTAB) were removed by calcination. Monodispersed spherical HCSNs were synthesized by optimising the parameters like water/ethanol volume ratio, PS/tetraethyl orthosilicate (TEOS) weight ratio, concentration of ammonia, and CTAB. Transmission electron microscopy (TEM) revealed the formation of hollow core-shell structure of silica with tunable thickness from 15 to 30 nm while tailoring the concentration of silica precursor. The results obtained from the cumulative release studies of doxorubicin loaded microporous HCSNs demonstrated the dependence of shell thickness on the controlled drug release behavior. HCSNs with highest shell thickness of 30 nm and lowest surface area of 600 m2/g showed delay in the doxorubicin release, proving their application as a drug carrier in targeted drug delivery systems. The novel concept of application of microporous HCSNs of pore size ~?1.3 nm with large specific surface area in the field of drug delivery is successful.  相似文献   

15.
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, occurring primarily in regions where viral hepatitis infections are common. Unfortunately, most HCC cases remain undiagnosed until late stages of the disease when patient outcome is poor, typically limiting survival from a few months to a year after initial diagnosis. In order to better care for HCC patients, new target-specific approaches are needed to improve early detection and therapeutic intervention. In this work, polymeric nanoparticles functionalized with a HCC-specific aptamer were examined as potential targeted drug delivery vehicles. Specifically, doxorubicin-loaded nanoparticles were prepared via nanoprecipitation of blends of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol). These particles were further functionalized with the HCC-specific TLS11a aptamer. The in vitro interaction and therapeutic efficacy of the aptamer and aptamer-functionalized nanoparticles were characterized in a hepatoma cell line. Nanoparticles were found to be spherical in shape, roughly 100–125 nm in diameter, with a low polydispersity (≤0.2) and slightly negative surface potential. Doxorubicin was encapsulated within the particles at ~40 % efficiency. Drug release was found to occur through anomalous transport influenced by diffusion and polymer relaxation, releasing ~50 % doxorubicin in the first 10 h and full release occurring within 36 h. Confocal microscopy confirmed binding and attachment of aptamer-targeted nanoparticles to the cell surface of cultured HCC cells. Efficacy studies demonstrated a significant improvement in doxorubicin delivery and cell-killing capacity using the aptamer-functionalized, drug-loaded nanoparticles versus controls further supporting use of aptamer nanoparticles as a targeted drug delivery system for HCC tumors.
Graphical abstract In this work, polymeric nanoparticles functionalized with a liver cancer-specific aptamer were examined as potential targeted drug delivery vehicles. The aptamer-functionalized nanoparticles were found to significantly improve doxorubicin drug delivery and cell-killing capacity in vitro versus non-targeted controls, supporting their use as a targeted treatment toward liver cancer tumors.
  相似文献   

16.
Solute‐polymer interactions can exert a large effect on selective sorption and permeation in polyacrylamide (PAAm) gels. In order to investigate this effect, three probe polyelectrolytes, sodium polystyrene sulphonate (PSS), polyvinylpyrrolidone (PVP), and sulfonated polyaniline (SPANI), were chosen as probe species in sorption, release, and permeation experiments in PAAm gels. For PAAm gels with trapped SPANI, FTIR spectroscopy has confirmed that there exists hydrogen‐bonding between SPANI and PAAm. In addition, rigid‐chain SPANI has an intense tendency to aggregate; it is likely that the effective chains of the PAAm matrices are enwrapped in these aggregates. Hydrogen‐bonding and aggregation resulted in that the release kinetics of SPANI from PAAm gels exhibited a remarkable “lag time”, as long as 100 h (lag period means that in the initial period there is no detectable SPANI released from PAAm gels.), the releasing rate of SPANI was very slow, and the selective sorption of SPANI in PAAm gels was extremely high. On the other hand, the release and permeation of PVP and PSS through PAAm gels were much faster than SPANI, and the selective sorption were close to unity. From these facts it could be deduced that there is no or only weak interaction between PAAm and PSS (or PVP). Adding of concentrated support electrolyte resulted in decrease of the release rate and a two‐magnitude decrease of the calculated diffusion coefficients of PSS; the effect of support electrolyte on release and permeation of PSS was partly attributed to the electrostatic interaction.  相似文献   

17.
In this work, highly luminescent carbon dots (CDs) were synthesized by the hydrothermal method at 170 °C for 12 h using pasteurized milk as a carbon source. The prepared CDs exhibited bright blue fluorescence under UV light illumination at 365 nm. The CDs show fluorescence life time of ~4.89 ns at excitation wavelength of 370 nm. The effect of different solvents on the fluorescence property of CDs was also investigated. The lisinopril (Lis)-loaded CDs were fabricated by self-assembly of lisinopril on the surfaces of CDs, which were characterized by UV-visible and FT-IR spectroscopic techniques. The controlled release of lisinopril from the Lis-CDs was realized at pH values of 5.2, 6.2 and 7.4, respectively. The results of the cytotoxicity and confocal laser scanning microscopic images indicate that the Lis-CDs were successfully uptaken by HeLa cells without apparent cytotoxicity. The synthesized CDs show great potential as drug vehicles with good biocompatibility, sustained release of lisinopril from CDs, indicating that the CDs can act as a promising drug delivery system for therapeutic delivery and/or bioimaging applications.  相似文献   

18.
A simple, sensitive and rapid spectrofluorimetric method for determination of itopride hydrochloride in raw material and tablets has been developed. The proposed method is based on the measurement of the native fluorescence of the drug in water at 363 nm after excitation at 255 nm. The relative fluorescence intensity-concentration plot was rectilinear over the range of 0.1–2 μg/mL (2.5?×?10?7–5.06?×?10?6 mole/L), with good correlation (r?=?0.9999), limit of detection of 0.015 μg/mL and a lower limit of quantification of 0.045 μg/mL. The described method was successfully applied for the determination of itopride hydrochloride in its commercial tablets with average percentage recovery of 100.11?±?0.32 without interference from common excipients. Additionally, the proposed method can be applied for determination of itopride in combined tablets with rabeprazole or pantoprazole without prior separation. The method was extended to stability study of itopride. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and oxidative degradation of the drug. A proposal for the degradation pathways was postulated.  相似文献   

19.
The use of microspheres as drug delivery vehicles for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The present paper describes the influence of process variables on the encapsulation and loading efficiency of 5-Fluorouracil (5-FU) in gelatin/chitosan (Gel/Cs) microspheres. The influences of preparation parameters, including the contents of the emulsifier Span-80, the cross-linking agent and 5-FU, and the stirring speed, on drug loading and encapsulation efficiency of the microspheres were investigated. The experimental results indicated that drug loading and encapsulation efficiency of microspheres increased with increasing concentration of the cross-linking agent; and then decreased when the concentration of the cross-linking agent was higher than 0.3 ml·g?1 of Gel/Cs. Drug loading and encapsulation efficiency increased with increasing concentration of Span-80; they reached the maximum value when the concentration of the emulsifier was 0.012 g·ml?1. The loading and encapsulation efficiency of the microspheres also increased with increasing stirring speed. In addition, drug loading and encapsulation efficiency increased with increasing concentration of 5-FU; however, the encapsulation efficiency decreased when the concentration of 5-FU was higher than 40 mg·ml?1.  相似文献   

20.
Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号