首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

2.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

3.
Ultrasonic-assisted electrodeposition was used to fabricate the nickel/graphene oxide composite coatings with high hardness, low friction coefficient, and high wear resistance. In the present study, the effects of ultrasonic power and concentration of graphene oxide on the mechanical and tribological properties of the electrodeposited nickel/graphene oxide composite coatings were systematically studied. X-ray diffraction (XRD) analyses showed that the crystallite size of the nickel decreased with an increase of ultrasonic power (0–50 W, 40 KHz, square wave) and concentration of graphene oxide (0.1–0.4 g/L). Morphologies of the surface and cross-section of the composite coatings observed by Scanning Electron Microscopy (SEM) confirmed the existence of graphene oxide particles in the nickel matrix. The results from microhardness measurement demonstrated that the hardness was increased by 1.8 times using 50 W ultrasonic-assisted electrodeposition with the fixed concentration of graphene oxide (0.1 g/L), compared to the pure nickel coating. The hardness was increased by 4.4 times for the 0.4 g/L graphene oxide with the optimized ultrasonic power of 50 W in comparison to the pure nickel coating. Meanwhile, the friction coefficient decreased gradually with an increase in ultrasonic power and concentration of graphene oxide, respectively, where the effect of the concentration of graphene oxide played a more important role.  相似文献   

4.
利用脉冲磁控溅射法,以铝青铜合金(C63200)和硅片为基底,制作不同Ti含量的MoS2-Ti复合涂层。通过XRD、SEM、EDS、光学显微镜、多环境摩擦试验机等表征了涂层的结构成分和摩擦性能。结果表明:随Ti含量的增加,涂层致密度提升,S、Mo原子比上升。Ti的掺入使涂层由高度结晶态向非晶态转变。Ti含量增加,涂层摩擦磨损性能先上升再下降,常温真空下含3%Ti的涂层拥有稳定和低至0.015的摩擦系数,23%Ti的涂层失去润滑性。温度升高到400℃,涂层摩擦系数由0.015~0.04上升至0.07~0.1,含13%Ti的涂层高温真空下在800s后润滑失效。磨痕形貌显示,含3%Ti的涂层磨痕最窄,温度升高宽度增加不大,含13%Ti的涂层磨损严重,400℃真空环境下很快磨穿,纯MoS2和13%Ti涂层摩擦时发现大量磨粒和破碎磨屑。  相似文献   

5.
In this paper, tin-bronze/TiN and tin-bronze/quasicrystal (AlCuFeB) composite coatings were fabricated by cold spray process. Microstructure and microhardness of the prepared coatings were investigated. Ball-on-disc dry sliding wear tests were conducted in an ambient condition to examine the tribological behavior of the composite coatings. The results show that the microhardness and the density of composite coatings increase significantly compared to the pure tin-bronze coating. The friction coefficient of composite coating decreases when reinforcing particles were introduced. Furthermore, the bronze/quasicrystal composite coating has a lower friction coefficient and wear rate than the bronze/TiN coating. Tribological mechanisms of the composite coatings were discussed.  相似文献   

6.
为了增强Ti6Al4V钛合金的耐磨性,采用激光沉积制造方法在其表面上制备了以原位生成的TiC颗粒和直接添加的WC颗粒为增强相的耐磨涂层,观察了各涂层的微观组织,并测量了涂层的显微硬度和涂层在室温大气条件下的摩擦磨损性能。结果表明各涂层和基体呈现冶金结合,原位自生的TiC和部分熔化的WC颗粒均能够均匀弥散分布于基体上,由于增强相颗粒的弥散强化及激光沉积组织的细晶强化作用,基材的硬度和耐磨性均得到了提高。原位自生的TiC涂层比WC涂层硬度梯度分布平缓,但耐磨性稍差。  相似文献   

7.
Thin carbon protective coatings were deposited on rigid magnetic disks by rf diode sputtering using a mixture of argon and nitrogen gases. A continuous drag test with thin-film head sliders was used to evaluate the performance of carbon coatings. Results significantly show that the carbon-nitrogen coatings have better wear performance than pure argon-sputtered carbon coatings. In addition, an elasto-plastic analysis of the stress distribution strongly indicates that wear damage should more readily occur in carbon overcoats containing large graphite particles and that a durable carbon coating should have a higher percentage of sp3 bonding.  相似文献   

8.
TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti–6Al–4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.  相似文献   

9.
Metal matrix composites reinforced with nano-sized particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Ni-SiC composites have gained widespread application for the protection of friction parts in the automobile industry. The influence of variables like SiC content, current density and stirring speed on microhardness of nano-composite coatings has been studied. The improved microhardness was associated with the reduction in crystallite size determined by X-ray diffraction studies. The influence of incorporation of nano-SiC in hardened Ni-Co alloy matrix was also studied. It was observed that for 28 wt.% Co content in the matrix the microhardness was higher compared to 70 wt.% for a given nano-SiC content. This was associated to the crystal phase of Ni-28Co-SiC being fcc compared to hcp phase exhibited by Ni-70Co-SiC. The wear resistance of pure Ni, Co and nano-composite coatings was studied using pin-on-disc wear tester under dry sliding condition. The volumetric wear loss indicated that, the wear resistance of Ni-SiC nano-composite is better than that of pure nickel deposit. The wear resistance of Ni-Co composites was observed to be superior to Ni composite. The wear behaviour of Ni and Ni-28Co composite was in accordance with the Archard's law. However, the superior wear characteristic exhibited by Ni-70Co-SiC composite followed the reverse Archard's behaviour.  相似文献   

10.
Deformation and fracture of electroplated Au-Ni coatings subjected to tribological testing under dry conditions were studied. Wear of the coatings is shown to result from macroscopic contact interaction of the specimen with the counterbody, and from abrasive action of microasperities on the counterbody surface and wear particles. The formation mechanisms of wear particles and a transfer layer were investigated, and their contribution to wear of the electroplated Au-Ni coatings was demonstrated. The significance of shear stresses arising at the coating/sublayer interface in coating fracture was substantiated.  相似文献   

11.
磁场辅助激光熔覆制备Ni60CuMoW复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
采用磁场辅助激光熔覆技术,在Q235钢表面制备了Ni60CuMoW复合涂层,借助SEM,EDS 和XRD 等表征手段对涂层进行了微观组织和物相分析,利用维氏硬度计测试了复合涂层截面的显微硬度分布,通过摩擦磨损实验和电化学测试系统研究了复合涂层的磨损性能和耐腐蚀性能。研究结果表明:涂层主要由-Ni,Cu)固溶体、硅化物和硼化物组成,Cr3Si晶粒细化且均匀致密;磁场辅助作用下,激光熔覆涂层平均显微硬度达到913HV0.5,为无磁场辅助涂层的1.5 倍,磨损失重仅为无磁场涂层的36%,自腐蚀电位上升了100 mV,腐蚀电流密度降低了70%,耐磨耐蚀性能得到了显著改善。  相似文献   

12.
石墨烯薄膜作为一种二维材料,是提高微/纳机电系统(MEMS/NEMS)摩擦力学性能的优异润滑剂.为了探究基底材料和石墨烯层数对其减磨性能的影响,本文通过在不同基底制备了不同层数的石墨烯涂层,利用原子力显微镜(AFM)实验和分子动力学(MD)仿真结合的方法,研究了石墨烯层数对减磨效应的影响.并且通过建立不同层数石墨烯涂层的摩擦性能分析模型,探究出石墨烯层间滑移是产生减磨的主要因素.结果表明:在不同载荷下,石墨烯涂层对硅基底和铜基底均有优异的减磨效果,摩擦力随着石墨烯层数的增加逐渐降低,当石墨烯层数大于10层时,达到最优99.3%的减磨效果.通过仿真分析发现,随着层数增加,石墨烯与基底的干摩擦转变为石墨烯的层间摩擦,并产生层间剪切滑移,石墨烯层间滑移是导致多层石墨烯优异减磨性能的主要因素.  相似文献   

13.
Effect of the laser treatment on electroless Ni-P-SiC composite coatings was investigated. The microscopic structure, surface morphology, ingredient, and performance of the Ni-P-SiC composite coatings were synthetically analyzed by the use of X-ray diffraction apparatus, scanning electron microscope, energy distribution spectrometer, micro-hardness tester, wear tester and so on. It was found that the composite coatings did make crystalloblastic transformation after laser heating. Structural analysis confirmed that some new types of phase Ni2Si or Ni3Si compound would emerge in the Ni-P-SiC coatings after laser treatment. The micro-hardness measurement results showed that when the laser power was 450 W with scanning speed of 0.5 m/min, the hardness of the coating was superior to the coating obtained by the conventional furnace heating, and wear resistance of the composite coating after laser treating could also improve.  相似文献   

14.
25%, 50%, and 75% polyphenylene sulfide (PPS) long fiber reinforced PPS resin were prepared by a hot pressing method. Neat resin PPS and PPS fiber samples were also prepared to compare with the self-reinforced PPS composites. The reinforcing fibers were preheat treated at 240°C for 24 h. The tribological properties of the self-reinforced PPS composites against an AISI 1045 steel ring were determined by a block on ring type friction tester. Differential scanning calorimetry (DSC) results indicated that a higher degree of crystallinity was retained in the self-reinforced PPS composites than in neat PPS resin after hot pressing. Therefore, the addition of PPS fiber improved both the mechanical and tribological properties of PPS resin significantly. Dynamic mechanical analysis (DMA) demonstrated that the PPS fibers increased the glass transition temperature (Tg) of the PPS resin. SEM images of the fracture surfaces indicated that the toughness of the samples increased with increasing PPS fiber content. Additionally, PPS fibers improved the tribological properties of PPS resin by significantly reducing the friction coefficient and wear rate.  相似文献   

15.
To improve the wear resistance of carbon fabric reinforced polyimide (CF/PI) composite, surface-modified graphene (MG) was synthesized and employed as a filler. The flexural strength, Rockwell hardness and thermal properties of the composites were tested. The composites were also evaluated for their tribological properties in a ring-on-block contact mode under dry sliding conditions. The results showed that the wear rate of MG reinforced CF/PI composites was reduced when compared to unfilled CF/PI composite. It was found that the 1?wt% MG filled CF/PI composites exhibited the optimal tribological properties. The worn surface, wear debris and transfer films were analyzed by scanning electron microscopy (SEM) and optical microscopy (OM) with the results helping to characterize the wear mechanism.  相似文献   

16.
Ni-SrSO4 composite coatings were electrodeposited on superalloy Inconel 718 from a Watts electrolyte containing a SrSO4 suspension. Ni-SrSO4 coatings were investigated by scanning electron microscope, microhardness tester, and friction and wear tester in sliding against a bearing steel ball under unlubricated condition. The incorporation of SrSO4 into Ni matrix increases the microhardness of electrodeposited coatings. Ni-SrSO4 composite coating exhibits a distinctly low friction coefficient and a small wear rate as contrasted with pure Ni coating and the substrate. The effect of SrSO4 particles on microstructure and tribological properties of Ni-SrSO4 composite coatings is discussed.  相似文献   

17.
激光熔覆原位合成Nb(C,N)陶瓷颗粒增强铁基金属涂层   总被引:5,自引:4,他引:1       下载免费PDF全文
采用预涂粉末激光熔覆技术,在42CrMo基体上制备出原位合成Nb(C, N)颗粒增强的铁基复合涂层。X射线及扫描电镜分析结果表明:激光熔覆获得的涂层基体为耐氧化、耐蚀性良好的Fe-Cr细晶组织及少量的-Fe相,原位合成的Nb(C, N)呈块状弥散分布在基体上。进一步的磨损试验表明:这些颗粒增强相极大增强了抗磨损性能,与未熔覆的母材相比,其磨损失重仅为母材的1/9左右; 涂层在750 ℃恒温氧化条件下具有较好的抗氧化性能,氧化层主要由NbO1.1,Cr2O3相组成; 母材的氧化产物为Fe2O3,容易脱落,保护性能较差; 激光熔覆涂层的氧化膜厚度仅为未涂层的1/5。  相似文献   

18.
In this paper, two types of tin bronze coatings (Cu-6 wt.% Sn and Cu-8 wt.% Sn) were prepared by cold spray process. The as-sprayed coatings were subjected to a vacuum heat treatment at 600 °C for 3 h. The coating microstructure, microhardness and tribological performance were characterized. The effects of the tin content and the vacuum heat treatment on the microstructure, microhardness and tribological behavior of the coatings were investigated. It is found that the as-sprayed CuSn6 (As6) and CuSn8 (As8) coatings exhibit practically an identical porosity. Meanwhile, As8 presents a higher microhardness than As6. In addition, the increase of the tin content in the powder feedstock leads to a lower wear rate. After a heat treatment, coating porosities are significantly reduced. However, the coating hardness is significantly decreased and the coating presents a much decreased wear resistance. For the as-sprayed coatings, such factors as ploughing and particle delamination could determine the sliding process. The heat treatment results in a distinct modification of the tribological behavior. For the annealed coatings, the adhesion, between the coating and the counterpart, could play a dominant role in the sliding process.  相似文献   

19.
火焰喷涂重熔Ni基WC复合涂层的耐磨性能试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈志刚  朱小蓉  汤小丽  孔德军  王玲 《物理学报》2007,56(12):7320-7329
利用火焰喷涂重熔方法制备了Ni基WC复合涂层,并进行了耐磨性能试验研究.通过扫描电子显微镜观察涂层磨损后的表面形貌,分析了WC体积分数、颗粒分布均匀性、包裹粉颗粒尺寸对涂层耐磨性的影响.结果表明:涂层硬度和耐磨性随着WC体积分数增加而提高,当WC体积分数过高时,降低了涂层致密性,其硬度和耐磨性反而有所下降;聚乙二醇(PEG)400+PEG2000+无水乙醇混粉方式的WC颗粒分布最均匀,降低了涂层磨损量;加入相同体积分数的亚微米级WC所制备的涂层耐磨性较微米级WC所制备的涂层耐磨性好. 关键词: 火焰喷涂 显微组织 颗粒尺寸 耐磨性能  相似文献   

20.
In order to improve the high-temperature wear resistance of austenitic stainless steel, a wear resistant composite coating reinforced with hard (Cr,Fe)7C3 carbide and toughened by ductile γ-(Ni,Fe)/(Cr,Fe)7C3 eutectic matrix was fabricated by a novel central hollow laser cladding technique. The constituent phases and microstructure as well as high-temperature tribological behaviors of the Ni-based coating were investigated, respectively, and the corresponding wear mechanisms were discussed. It has been found that the composite coating exhibits superior wear resistance than substrate either at ambient or high temperatures. The coating shows better sliding wear resistance at 600 °C than 300 °C owing to high-temperature stability of the reinforced carbide and polishing effect as well as formation of continuous lubricious films, which implied it has large potential industrial applications at relatively higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号