首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The melting behaviors of poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends, compatibilized by epoxy, and PTT spherulite morphology in the blends were investigated. When epoxy was present during blending, the melting behaviors of PTT/PC blends changed substantially; glass transition temperatures (Tg's) and cold crystallization temperature (Tcc's) of the PTT‐rich phase shifted to higher temperatures, while Tm's shifted slightly to lower temperatures, indicating that epoxy suppressed considerably all processes of dynamic movements pertinent to molecular (or segmental) movements. The cold crystallization process responded sensitively to thermal history. Changes of Tcc's with composition suggested that the epoxy's compatibilization effect was pronounced when PTT and PC were in near equal content.

Recrystallization or reorganization exotherms appeared before melting for isothermally crystallized PTT/PC and PTT/PC epoxy (E) blends. A wide angle X‐ray diffraction (WAXD) analysis showed that, although the perfection of PTT crystallites was influenced either by PC content and the presence of compatibilizer or by the crystallization temperature and crystallization time, PTT's crystal structure was independent of these variables.

The polarized light microscopy (PLM) observations showed that PTT spherulite morphology was very sensitive to blend composition. Epoxy addition interfered severely with the growth of PTT spherulites, causing them to be much less developed. When the spherulites grew under a condition of varied composition, they would exhibit diversified spherulite morphology, though in one spherulite.  相似文献   

2.
The kinetics of isothermal melt crystallization of poly(trimethylene terephthalate) (PTT)/poly(butylene terephthalate) (PBT) blends were investigated using differential scanning calorimetry (DSC) over the crystallization temperature range of 184–192°C. Analysis of the data was carried out based on the Avrami equation. The values of the exponent found for all samples were between 2.0 and 3.0. The results indicated that the crystallization process tends to be two‐dimensional growth, which was consistent with the result of polarizing light microscopy (PLM). The activation energies were also determined by the Arrhenius equation for isothermal crystallization. The values of ΔE of PTT/PBT blends were greater than those for PTT and PBT. Lastly, using values of transport parameters common to many polymers (U*=6280 J/mol, T =T g – 30), together with experimentally determined values of T m 0 and T g, the nucleation parameter, K g, for PTT, PBT, and PTT/PBT blends was estimated based on the Lauritzen–Hoffman theory.  相似文献   

3.
Nano-Sb2O3 particles and brominated epoxy resin (BEO) powders were dispersed in poly (butylene terephthalate) (PBT) by high energy ball milling (HEBM). Then the nanocomposites were prepared by a twin screw extruder. The influence of the nano-Sb2O3 particles on the crystallization, thermal stability, flame retardancy and mechanical properties of the PBT/BEO/nano-Sb2O3 composites were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 tests and scanning electron microscopy (SEM). The results showed that the nano-Sb2O3 particles improved the crystallizability, thermal stability and flame retardancy properties of the PBT/BEO/nano-Sb2O3 composites. When the content of nano-Sb2O3 particles was 2.0?wt%, the LOI of nano-Sb2O3/BEO/PBT composites increased from 22.0 to 27.8 and the tensile strength reached its maximum value (62.44?MPa), which indicated that the optimum value of flame retardancy and mechanical properties of PBT/BEO/nano-Sb2O3 composites were obtained.  相似文献   

4.
Poly(butylene terephthalate)/silica nanocomposites were prepared by in situ polymerization of terephthalic acid, 1,4-butanediol and silica. Transmission electron microscopy (TEM) was used to examine the quality of the dispersion of silica in the PBT matrix. The non-isothermal crystallization behavior of pure PBT and its nanocomposites was studied by differential scanning calorimetry (DSC). The results show that the crystallization peak temperatures of PBT/silica nanocomposites are higher than that of pure PBT at a given cooling rate. The values of halftime of crystallization indicate that silica could act as a heterogeneous nucleating agent in PBT crystallization and lead to an acceleration of crystallization. The non-isothermal crystallization data were analyzed with the Avrami, Ozawa, and Mo et al. models. The non-isothermal crystallization process of pure PBT and PBT/silica nanocomposites can be best described by the model developed by Mo et al. According to the Kissinger equation, the activation energies were found to be ?217.1, ?226.4, ?259.2, and ?260.2 kJ/mol for pure PBT and PBT/silica nanocomposites with silica weight content of 1, 3 and 5 wt%, respectively.  相似文献   

5.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

6.
Recycled poly(ethylene terephthalate) (R-PET) and virgin polyamide 6 (PA6) blends compatibilized with glycidyl methacrylate grafted poly(ethylene-octene) (POE-g-GMA) were melt blended. The morphological, rheological and mechanical properties of the prepared blends were investigated by scanning electron microscopy, rheology, and an electromechanical testing instrument, respectively. All of the blends showed a droplet dispersion type morphology, and the PA6 particle size decreased with increase in the POE-g-GMA concentration. The storage modulus (G′), loss modulus (G′′), and complex viscosity (η*) of the blends significantly increased at low frequency with the addition of POE-g-GMA. In addition, ‘‘Cole-Cole’’ plots showed that the elasticity of the blends was also increased by raising the compatibilizer dosage. It was also found that 10 wt% of POE-g-GMA caused 88.46 and 171.05% increments in Charpy impact strength and elongation at break with only a 21.66% decrement in tensile strength.  相似文献   

7.
Poly(buthylene terephthalate)(PBT)/single wall carbon nanotubes (SWCNTs) composite nanofibers were prepared by electrospinning. The effect of carbon nanotubes on the morphology, crystallization, and mechanical properties of the electrospun composite nanofibers were investigated by SEM, DSC, and tensile testing, respectively. SEM observations indicated that the presence of SWCNTs resulted in finer nanofibers for lower loading; however, a broader distribution, especially for the higher diameter ranges was found for nanofibers with higher amounts of carbon nanotubes. SWCNTs accelerated crystallization and acted as a nucleating agent; the degree of crystallinity increased with increasing content of SWCNTs, followed by a moderate decrease at higher content. Specific tensile strength and modulus of the PBT/SWCNTs composite nanofibers mats were higher than that of neat PBT nanofibers mat. However, the elongation at break of composite nanofibers mats was lower than that of the neat PBT nanofibers mat.  相似文献   

8.
Poly(trimethylene terephthalate)(PTT)/thermoplastic polyester elastomer (TPEE) blends were prepared and their miscibility, crystallization and melting behaviors, phase morphology, dynamic mechanical behavior, rheology behavior, spherulites morphology, and mechanical properties were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), parallel-plate rotational rheometry, polarized optical microscopy (POM), wide angle X-ray diffraction (WAXD), universal tensile tester and impact tester, respectively. The results suggested that PTT and TPEE were partially miscible in the amorphous state, the TPEE rich phase was dispersed uniformly in the solid matrix with a size smaller than 2 μm, and the glass transition temperatures of the blends decreased with increasing TPEE content. The TPEE component had a good effect on toughening the PTT without depressing the tensile strength. The blends had improved melt viscosities for processing. When the blends crystallized from the melt state, the onset crystallization temperature decreased, but they had a faster crystallization rate at low temperatures. All the blends’ melts exhibited a predominantly viscous behavior rather than an elastic behavior, but the melt elasticity increased with increasing TPEE content. When the blends crystallized from the melt, the PTT component could form spherulites but their morphology was imperfect with a small size. The blends had larger storage moduli at low temperatures than that of pure PTT.  相似文献   

9.
Glycidyl methacrylate functionalized methyl methacrylate-butadiene-styrene copolymer (MBS-g-GMA) core-shell particles were prepared via an emulsion polymerization process. MBS-g-GMA was used to toughen poly(butylene terephthalate) (PBT) and the synergistic toughening effect of polycarbonate (PC) on PBT/MBS-g-GMA blends were investigated. Notched impact tests showed the percolation threshold became lower with the increase of PC content. Transmission electron microscopy displayed a very good dispersion of MBS-g-GMA particles in the PBT matrix with the different PC contents. The synergistic toughening effect was due to the encapsulation structure of PC which could facilitate the whole PBT matrix to yield. The more perfect the encapsulation structure formed, the more obvious the synergistic toughening the PC achieved. Sufficient strength of the phase interface was important to ensure the stress transfer effectively and facilitate the whole PBT matrix to yield. The interface strength between PC and MBS-g-GMA could be ensured by the good miscibility between Poly(methyl methacrylate) (PMMA) (grafted onto the polybutadiene-based rubber core) and PC. For the PBT/PC, the transesterification between PBT and PC improved the interface strength of the PBT and PC phases, as demonstrated by Fourier transform infrared spectroscopy (FTIR) scans. Scanning electron microscopy results showed shear yielding of the matrix and cavitation of the rubber particles were the major toughening mechanisms.  相似文献   

10.
The crystallization behavior of poly(trimethylene terephthalate (PTT) in compatibilized and uncompatibilized PTT/polycarbonate (PC) blends are investigated in the research reported in this paper. The differential scanning calorimetry (DSC) results showed that the crystallization behaviors of PTT/PC blends were very sensitive to PC content. The onset (Tci) and the peak (Tc) crystallization temperatures shifted to lower temperatures whereas the area of the exotherm decreased quickly as the PC content was increased. The Avrami exponent, n, decreased from 4.32 to 3.61 as the PC content was increased from 0 to 20 wt %, and the growth rate constant, Z c , decreased gradually as well. This suggests that the nucleation mechanism exhibits the tendency of changing gradually from a thermal nucleation to an athermal mode although the growth mechanism still remains three‐dimensional. When epoxy (2.7 phr) was added as a compatibilizer during melt blending, the Tci and Tc shifted slightly to higher temperature (≤2°C), and the crystallization enthalpy, however, exhibited an increased crystallinity with the exception of the 90/10/2.7 phr PTT/PC/Epoxy. This suggests that the epoxy make a positive contribution to the PTT crystallization. Moreover, the influences of epoxy on the crystallization behaviors of PTT/PC blends are related to the epoxy content. By contrast, the compatibilizer of ethylene‐propylene‐diene copolymer graft glycidyl methacrylate (EPDM‐g‐GMA, ≤6.3 phr) had little effect on the crystallization behavior of PTT/PC blends. For PTT/PC/Epoxy (2.7 phr) blends, the Avrami exponent, n, decreased to near 3, while the growth rate constant, Z c , increased slightly as PC content was increased from 0 to 20 wt %. It is suggested that epoxy accelerated the process of the nucleation mechanism changing from thermal nucleation to an athermal mode. The EPDM‐g‐GMA had little effect on the nucleation mode and spherical growth mechanism. The PTT spherulite morphologies in PTT/PC blends were very sensitive to blend composition. Completely different morphologies were observed in pure PTT, PTT/PC, PTT/PC/Epoxy, and PTT/PC/EPDM‐g‐GMA blends.  相似文献   

11.
The morphology and composition of organic montmorillonites are critical for their dispersion in polymer matrixes. In the current study, the pristine montmorillonite (MMT) was first surface modified with silane and then intercalated using two kinds of intercalating agents in supercritical carbon dioxide (scCO2). The obtained OMMTs with tunable morphology and composition, together with pristine MMT and commercial MMT, were introduced into poly(butylene terephthalate) (PBT) to investigate the MMTs dispersion in the PBT matrix and the final properties of the PBT/MMT nanocomposites. The structure of the different MMTs and their dispersion in the PBT matrix were characterized by SEM and TEM, respectively. The crystallization behavior, storage moduli and loss factors of the PBT/MMT nanocomposites were also investigated.  相似文献   

12.
The mechanical properties, morphology, crystallization, and melting behaviors and nonisothermal crystallization kinetics of poly (trimethylene terephthalate)(PTT)/maleinized acrylonitrile-butadiene-styrene (ABS-g-MAH) blends were investigated by an impact tester, polarized optical microscopy, and differential scanning calorimetry (DSC). The results suggested that the ABS-g-MAH component served as both a nucleating agent for increasing the crystallization rate and as a toughening agent for improving the impact strength of PTT. When the ABS-g-MAH content was 5wt.%, the blend had the best toughness and a high crystallization rate. The blends showed different crystallization rates and subsequent melting behaviors due to their different ABS-g-MAH contents. The Ozawa theory and the method developed by Mo and coworkers were used to study the nonisothermal crystallization kinetics of the blends. The kinetic crystallization rate parameters suggested that the proper contents of ABS-g-MAH can highly accelerate the crystallization rate of PTT, but this effect nearly reaches saturation for ABS-g-MAH contents over 5%. The Ozawa exponents calculated from the DSC data suggested that the PTT crystals in the blends have similar growth dimensions as those in neat PTT, although they are smaller and/or imperfect. The effective activation energy calculated by the method developed by Kissinger also indicates that the blends with higher ABS-g-MAH content were easier to crystallize.  相似文献   

13.
To determine the factors influencing the retardation of the crystallization of poly(trimethylene terephthalate) (PTT) when PTT is blended with polycarbonate (PC), different PTT/PC blends were prepared via the melt mixing method. The relationships between the crystallization behavior and blend composition, as well as the phase morphology, were investigated. The results showed that the predominant reason for the retardation in crystallization is due to the PC content and phase morphology. The PC influences the crystallization of PTT via two methods. First, it retards PTT crystallization. Secondly, the PC exhibits a nucleation effect on the PTT crystallization which is, however, much weaker compared to the negative effect PC exerts with regards to PTT crystallization. When the processing temperature and shear rate remains unchanged, the two effects of PC determine the crystallization behavior of the blend. The phase morphology, which is strongly dependent on the mixing temperature and the shear rate, and which is also related to mixing time, had an appreciable impact on PTT crystallization. In the case of similar adhesion with the interface, a finer PC phase domain would show a slightly stronger nucleation effect on PTT crystallization.  相似文献   

14.
Recycled poly(ethylene terephthalate) (r-PET) was blended with poly(ethylene octene) (POE) and glycidyl methacrylate grafted poly(ethylene octene) (mPOE). The nonisothermal crystallization behavior of r-PET, r-PET/POE, and r-PET/mPOE blends was investigated using differential scanning calorimetry (DSC). The crystallization peak temperatures (T p ) of the r-PET/POE and r-PET/mPOE blends were higher than that of r-PET at various cooling rates. Furthermore, the half-time for crystallization (t 1/2 ) decreased in the r-PET/POE and r-PET/mPOE blends, implying the nucleating role of POE and mPOE. The mPOE had lower nucleation activity than POE because the in situ formed copolymer PET-g-POE in the PET/mPOE blend restricted the movement of PET chains. Non-isothermal crystallization kinetics analysis was carried out based on the modified Avrami equation, the Ozawa equation, and the Mo method. It was found that the Mo method provided a better fit for the experimental data for all samples. The effective energy barriers for nonisothermal crystallization of r-PET and its blends were determined by the Kissinger method.  相似文献   

15.
Composite materials consisting of poly(butylene succinate) (PBS) and montmorillonite (MMT), modified to various extents using trihexyltetradecylphosphonium chloride (THTDP) cations, were prepared using a simple melt intercalation technique. The surfactant contents were varied, i.e. 0.4, 0.6, 0.8, 1.0, and 1.2 times the cation exchange capacity (CEC) of the MMT. The intercalation of the surfactant molecules into MMT layers, confirmed by the increase in interlayer spacing and significant changes in the morphology of the modified MMT, facilitated the dispersion of the clay in the PBS matrix. The properties of the PBS-based composites were changed with increasing surfactant content. The melting and crystallization temperatures increased and the degree of crystallinity (χc) decreased. The storage modulus was significantly enhanced below the glass transition temperature (Tg), and Tg shifted to a higher temperature, with a maximum at a surfactant loading of 0.6 CEC. The mechanical properties, including tensile strength, flexural strength, flexural modulus and impact strength, increased and then decreased with surfactant loading, with the maximum observed also at a surfactant loading of 0.6 CEC. In conclusion, an ideal balance between thermal and mechanical properties can be obtained at a surfactant quantity equivalent to 0.6 times the clay CEC. Moreover, all the composites exhibited obvious improvement in thermal and mechanical properties as compared to those of neat PBS.  相似文献   

16.
Polypropylene (PP) /poly(trimethylene terephthalate), (PTT), binary blends in the presence of two interfacial modifier as well as two organically modified nanoclay additives were studied in terms of mechanical and morphological characteristics. Scanning electron microscopy confirmed the incompatibility of the system which was solved to some extent through incorporating the nanoclay as well as functional compatibilizers. An evaluation of the specimens via static mechanical tests in tensile mode gave credence to the assumption that the higher the PTT content, the higher the mechanical performance would be. Furthermore, the compatibilizer-containing blends not only exhibited higher toughness, but also possessed enhanced stiffness when a maleated compatibilizer was added. The tensile modulus was promoted further in the presence of clay nanoparticles; however, toughness was somewhat sacrificed. The Barentsen as well as Halpin-Tsai models were found to describe the binary blends modulus. The reinforcing impact of the nanoclay was exploited to a greater degree in the presence of the compatibilizer.  相似文献   

17.
Abstract

Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by melt blending and rapid quenching in ice water. The miscibility and thermal properties were investigated using differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA). The blend's morphologies were investigated using scanning and transmission electron microscopies. Both DSC and DMA results suggested that PTT and PC were very limited, partially miscible pairs. The melting point, melt crystallization, and cold crystallization exotherms in the blends of PTT were depressed by the presence and amount of PC. When the PC content was <50 wt%, PC spherical particles were found to distribute evenly in the PTT matrix; at 50–60 wt%, the two‐phase structures were close to being bicontinuous. At higher PC content, PTT formed a string‐like texture in the PC matrix. The PTT spherulitic morphologies in PTT/PC blends were found to be very sensitive to PC and PC content. When the PC content was ≥60 wt%, the blends crystallized as an agglomeration of tiny PTT crystals.  相似文献   

18.
Poly(butylene succinate-co-adipate) (PBSA)/poly (trimethylene carbonate) (PTMC) blend samples with different weight ratios were prepared by solution blending. The morphologies after isothermal crystallization and in the melt were observed by optical microscopy (OM). Differential scanning calorimetry (DSC) was used to characterize the isothermal crystallization kinetics and melting behaviors. According to the OM image before and after melting, it was found that the blends formed heterogenous morphologies. When the PTMC content was low (20%), PBSA formed the continuous phase, while when the PTMC contents was high (40%), PBSA formed the dispersed phase. The glass transition temperatures (Tg) of the blends were determined by DSC and the differences of the Tg values were smaller than the difference between those of pure PBSA and PTMC. In addition, the equilibrium melting points were depressed in the blends. According to these results, the PBSA/PTMC blends were determined as being partially miscible blends. The crystallization kinetics was investigated according to the Avrami equation. It was found that the incorporation of PTMC did not change the crystallization mechanism of PBSA. However, the crystallization rate decreased with the increase of PTMC contents. The change of crystallization kinetics is related with the existences of amorphous PTMC, the partial miscibility between PLLA and PTMC, and the changes of phase structures.  相似文献   

19.
Poly (butylene terephthalate) (PBT)/regenerated silk fibroin (RSF) blend electrospun nanofibrous mats were manufactured to combine the excellent mechanical behavior of PBT with the extraordinary hydrophilic property of RSF. A 1:1 mixture of trifluoroacetic acid (TFA) and dichloromethane (DCM) was adopted as the solvents for PBT and RSF with 20% (w/v) PBT and 16 wt% RSF solutions being mixed in various proportions for electrospinning. The morphology, crystallization, Fourier transform infrared (FTIR) spectra, surface roughness, contact angle, and wetting time of the electrospun blended materials were studied. When the weight ratio of RSF was larger than 50%, a water drop on the surface of the electrospun mat was completely permeated within 300 s or less. Besides the chemical influence of the amino and carboxy groups in RSF, the physical characteristics of the RSF in the blend electrospun mats, such as random coil structure, lower crystallinity, rougher surface than PBT, etc., were a partial reason for the improvement of wettability. The blend nanofibrous mats may be especially applicable in biomedical fields.  相似文献   

20.
Polylactide (PLA)/poly(ethylene-co-octene) (POE) blends containing ethylene-glycidyl methacrylate copolymer (EGMA) as a compatibilizer were prepared by melt blending. An immiscible, two-phase structure with POE dispersed in the PLA matrix was observed by scanning electron microscopy. It was found that the POE particle size was significantly decreased by the addition of EGMA, and the POE particle size and distribution decreased with the increase of the compatibilizer content up to 2% EGMA, beyond which the POE particle size and distribution remained unchanged. The reactions between the epoxy groups of EGMA and carboxylic or hydroxyl groups of PLA were elucidated by the Fourier transform infrared spectroscopy. Rheological results showed that the G′(ω), G″(ω), and complex viscosity of PLA/POE blends significantly increased at low frequencies with the addition of EGMA. The failure mode changed from brittle fracture of the neat PLA to ductile fracture of the PLA/POE blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号