首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinylidene fluoride) (PVDF) membranes were prepared by the immersion precipitation method. Effects of the maturation time of dopes on the morphology and crystallization of the prepared membranes were investigated. The analysis showed that the maturation time played an important role in determining the morphology of the prepared membranes. For the dope prepared in the initial day, liquid–liquid demixing preceded solid–liquid demixing in the process of the membrane formation. The morphology of the cross section of the prepared membrane (M1) was finger-like structures with a sponge substrate beneath the porous skin. During the maturation, the dopes underwent a microscopic phase separation and the PVDF crystallized, which resulted in the existence of micro-liquid phases and micro-solid phase crystalline areas in the dopes. In the process of the membrane formation, liquid–liquid demixing took place by nucleation and growth of droplets of the polymer rich phase in the micro-liquid phase. The micro-solid phase crystallites were connected together by the polymer chains, and formed a three-dimensional network gelation morphology. The crystal structure of M1 was mainly β crystals. With increasing maturation time of the dopes, the proportion of β decreased crystals, but that of α crystals increased for the prepared membranes.  相似文献   

2.
The synthesized hydrophilic polymers [poly (vinyl butyral) (PVB) and cationic PVB (CPVB)] blended with poly (vinylidene fluoride) (PVDF) were used to fabricate hydrophilic ultrafiltration membranes. A visual inspection method and a glass transition temperature method were applied to study the miscibility of PVDF/PVB and PVDF/CPVB blend systems. The results showed that the PVDF/PVB was an immiscible blend and the PVDF/CPVB was a partially miscible blend. Dynamic contact angle experiments showed that the hydrophilicity of the blend membranes was significantly improved with the addition of PVB and CPVB. The pure water permeation (PWP) of blend membranes increased with the content of PVB and CPVB.  相似文献   

3.
We examined the free surface of a banded spherulite of poly (vinylidene fluoride) (PVDF) by atomic force microscopy. The directions of the slope of multilayer terraces of lamellar crystals are retained in each half of a banded spherulite; this evidence confirms the macroscopic selection of one-handedness in the formation of spiral terraces in each growth direction of the sheaf at the center of banded spherulite of PVDF. In a previous paper, it was confirmed that the three-dimensional morphology of all single crystals of PVDF grown from the melt is of chair-type, and hence, it is most probable that the stress in the chair crystal is responsible for the formation of spiral dislocations and terraces keeping the same handedness in each growth direction. The chair-type morphology is created because of the chain tilting to the fold surface, which can introduce symmetry breaking and, consequently, the selection of handedness in nonchiral polymers such as PVDF.  相似文献   

4.
The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/polymethyl methacrylate (PMMA)/dipropylene glycol dibenzoate (DPGDB) blends, where DPGDB served as a diluent, via solid–liquid (S-L) phase separation during a thermally induced phase separation process was investigated through differential scanning calorimetry (DSC) measurements. It was found that the Ozawa model could only describe the nonisothermal crystallization behavior of PVDF/PMMA/DPGDB system to some extent. The influence of the cooling rate and PMMA/PVDF weight ratio in the PVDF/PMMA/DPGDB system on the crystallization mechanism was also examined based on the Avrami–Jeziorny method and Mo method. Primary crystallization and secondary crystallization were observed in the Avrami–Jeziorny analysis. The analysis by the Avrami–Jeziorny and Mo models indicated that the increase of PMMA/PVDF weight ratio decreased the crystallization rate during the primary crystallization stage. The results showed that the Mo method could well explain the kinetics of the primary PVDF crystallization. The Avrami–Jeziorny method, however, could not well describe the nonisothermal crystallization process of PVDF in the primary crystallization stage. The activation energy, determined by the Kissinger method, was not suitable to reflect the PVDF crystallization process in the PVDF/PMMA/DPGDB system.  相似文献   

5.
Polyvinylidene fluoride (PVDF) flat-sheet membranes were prepared via a non-solvent-induced phase separation (NIPS) method at 60°C using a hydrophilic surfactant OP-10 (octylphenol polyoxyethylene ether) solely (Blank) or with a second additive [H2O or lithium chloride (LiCl)] as pore-forming agents. The influence of OP-10 concentration on the surface tension, viscosity, and precipitation rate of PVDF/(H2O, LiCl, or Blank) systems were investigated, and the ultrafiltration and mechanical properties of the resultant membranes were measured. It was found that an increased demixing rate during the coagulation process was the reason for the change in membrane morphology and properties. An obviously improved flux and slightly decreased mechanical properties and rejection were found in membranes prepared using a high concentration of OP-10 and the second component as additives. SEM pictures revealed an increased porous structure on the resultant membrane surface. A hypothesis was proposed to explain these phenomena; the reoriented surfactant molecules at the interface facilitated the water diffusion channels, which finally became the porous structure on the membrane surface. The weakened mechanical properties were due to the macrovoid structure in its membrane cross-section, which developed from the micelle structure in the casting solution. This hypothesis was further confirmed in a PVDF/OP-10/polyethylene glycol (PEG) system. A consistent conclusion was obtained.  相似文献   

6.
The thermally induced phase separation (TIPS) process was employed to prepare poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blend microporous membranes. The effect of PMMA content on the dynamic crystallization temperature of the PVDF/PMMA/sulfolane system was analyzed. The effects of PMMA weight fraction and cooling rate on the cross-sectional morphology, crystallinity, crystal structure, thermal stability, and porous structure of the resulting membranes were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and a mercury porosimeter, respectively. The mechanical properties of the membranes were evaluated by tensile tests. It was found that solid–liquid phase separation occurred in the PVDF/PMMA/sulfolane system. Scanning electron microscopy revealed that either increasing PMMA weight fraction or decreasing cooling rate will lead to a macroscopical phase separation between PVDF and PMMA. PMMA weight fraction and cooling rate had some influence on the crystallinity, porous structure, and mechanical properties, but no influence on the polymer crystal structure of the membranes. PMMA weight fraction influenced thermal stability of the final membranes but cooling rate did not.  相似文献   

7.
The thermodynamics and kinetics of phase separation in partially miscible blends of poly (vinyl methyl ether) (PVME) and two kinds of polystyrene (PS) with the same weight average molecular weight but different polydispersity were studied. The miscibility of PS/PVME with the monodisperse PS was better than that of PS/PVME with the polydisperse PS. Different morphology was observed for the two kinds of PS/PVME (10/90) blends during the nonisothermal phase separation process. The blend with monodisperse PS presented a co-continuous structure while the blend with polydisperse PS presented a viscoelastic phase separated network structure at a quench depth of 29°C. With increase of the heating rate, the increase of cloud point of PS/PVME (30/70) with polydisperse PS was smaller than that of PS/PVME (30/70) with monodisperse PS. During the isothermal phase separation of the critical composition (20/80) of PS/PVME with a quench depth of 30°C, it was found that the phase morphology of the two kinds of blends was nearly the same at the early stage of phase separation. However, as the dispersed phase, an approximately spherical droplet structure was observed in the blend with monodisperse PS at the late stage of phase separation, which did not appear in the blend with polydisperse PS.  相似文献   

8.
Microporous poly(vinylidene fluoride) (PVDF) membranes were prepared by thermally induced phase separation (TIPS) at different quenching temperatures with benzophenone as the diluent. The crystallization behavior and crystal structure of PVDF in PVDF/benzophenone systems were investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). The different PVDF concentrations had a remarkable effect on PVDF crystallization behavior and resulted in different membrane structures. Spherulitic structures were vague when the PVDF/benzophenone solution was quenched to ?8°C; however, discernable spherulitic structures were obtained when quenched to 34 and 49°C. Additionally, two phase separation mechanisms (solid–solid (S–S) and solid–liquid (S–L) phase separation) were observed during membrane preparation. It was revealed by scanning electron microscopy (SEM) that microporous membranes had more discernable spherulitic structures formed by S–L phase separation than by S–S phase separation, which induced macrovoids and irregular pores on the fracture surfaces of membranes.  相似文献   

9.
The rigid polymer poly(p-phenylene benzobisthiazole) (PBZT) was crystallized from dilute solution. Electron microscopy showed that, on quenching, flat fibrils several nanometers thick were produced. Subsequent heat treatment in a solvent changed the morphology from fibrillar into “segmented ribbon” structure. Isothermal crystallization at a temperature of about 30°C below the dissolution temperature, in general, resulted in aggregation of rod crystals. The polymer chains were oriented normal to the rod crystals. The width of the rod crystal increased with average molecular length, but saturated to a value much smaller than the average molecular length. In the shorter molecular length range, the rod crystals clustered in a fanned-out manner, while with a medium molecular length (ca. 70–120 nm), all rods crystals in a cluster aligned parallel to each other and were of the same length. With longer molecular length (more than ca. 180 nm), the rod growth slowed because of small diffusion constants of molecular chains to the growing face. Based on observation of the morphology and the crystallization process, an isothermal crystallization mechanism is proposed. Because of the rigidity and wide length distribution of polymer chains, the chain ends were inevitably included within the crystals, resulting in crystal defects such as axial shifts, lattice curvatures, and edge dislocations, all of which were observed directly by lattice imaging.  相似文献   

10.
Polylactide (PLA)/poly(ethylene-co-octene) (POE) blends containing ethylene-glycidyl methacrylate copolymer (EGMA) as a compatibilizer were prepared by melt blending. An immiscible, two-phase structure with POE dispersed in the PLA matrix was observed by scanning electron microscopy. It was found that the POE particle size was significantly decreased by the addition of EGMA, and the POE particle size and distribution decreased with the increase of the compatibilizer content up to 2% EGMA, beyond which the POE particle size and distribution remained unchanged. The reactions between the epoxy groups of EGMA and carboxylic or hydroxyl groups of PLA were elucidated by the Fourier transform infrared spectroscopy. Rheological results showed that the G′(ω), G″(ω), and complex viscosity of PLA/POE blends significantly increased at low frequencies with the addition of EGMA. The failure mode changed from brittle fracture of the neat PLA to ductile fracture of the PLA/POE blends.  相似文献   

11.
Fully biodegradable poly(L-lactide) and poly(ethylene succinate) (PLLA/PES) blends were prepared via melt-blending using PLLA and PES as reactants in a stainless steel chamber. The prepared PLLA/PES blend, as well as neat PLLA and PES, was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD) to confirm the structure and the crystallization of PLLA in the blend. The mechanical properties of PLLA/PES blends were determined by bending and tensile tests and the effects of PES content on the mechanical properties of PLLA/PES blends were investigated. It was found that blending some amount of PES could significantly improve the elongation at break while still keeping considerably high strength and modulus. With increasing PES content, both strength and modulus gradually decreased; however the elongation at break significantly increased. SEM was used to examine the morphology of fracture surfaces of PLLA/PES blends.  相似文献   

12.
闻海虎 《物理》2006,35(1):16-26
文章简要介绍了高温超导体磁通动力学和混合态物理在过去十余年的发展。高温超导体由于其自身的一些特点,使得它与常规超导体相比较拥有极其丰富的相图,磁通动力学也表现出了非常丰富的研究内容,很多新的概念被提出,新的现象被观察到。比如说涡旋玻璃态,集体钉扎和蠕动,磁通格子的一级和二级熔化相变,布拉格玻璃,峰值效应,二维涡旋饼态,Josephson磁通运动等等,均是在高温超导体发现之后提出来的新的概念或新发现的现象。有些研究结果目前尚无定论,如关于涡旋玻璃态存在与否的争论至今仍然在进行,但是这些研究内容无疑会大大促进超导物理的发展。高温超导体磁通动力学纷繁复杂的研究内容可以归结为三个相互关联的数字:Ginzburg数(T/He^2εξ^3)^2/2,量子电阻Qu=(e^2/h)(ρn//εξ),和临界电流的比值jc/jo,这里ξ是相干长度,Hc是热力学临界磁场,ε是有效质量的各向异性度,ρn是正常态电阻率,jc是零温临界电流,jo是拆对临界电流。对于高温超导体前两个数值(Ginzburg数和量子电阻)很大,而临界电流比值较小,因此导致有强的热涨落和量子涨落,以及很强的磁通运动行为(对应小的实测临界电流)。磁通动力学的研究从更深层次影响超导体的临界电流问题和强电应用的发展,最后简要地介绍了这方面的情况。  相似文献   

13.
Isotactic polypropylene (iPP) film was melt-crystallized in a temperature gradient. The iPP film showed well oriented α- and β-crystalline textures along the gradient. The crystalline structure, phase transition boundary and lamellar twisting were examined by X-ray diffraction and laser light diffraction (LLD). On the α-β boundary, LLD shows a sharp streak perpendicular to the boundary, where the a-axis of the β-crystal is oriented perpendicular to the temperature gradient. Apart from the boundary, the a-axis of the β-crystal becomes parallel to the gradient. The β-crystal shows lamellar twisting with a pitch of 200 μm at room temperature. When heated the β-crystal, the lamellar distance of 295Å at room temperature decreases to 285Å at 80–100°C and then increases to more than 300Å above 120°C. During the heating, the value of the twist period increases from 200 to 210 μm at 90–100°C, and then to above 224 μm at 140°C. The increase of the twist period is related to the increasing crystalline thickness of the β-lamellae.  相似文献   

14.
Poly(ethene-co-1-butene)-graft-methyl methacrylate-acrylonitrile (PEB-g-MAN), synthesized by suspension grafting copolymerization of methyl methacrylate and acrylonitrile onto PEB, was blended with styrene-acrylonitrile copolymer (SAN). The mechanical properties, phase structure, toughening mechanism, miscibility, and thermal stability of the SAN/PEB-g-MAN blends were studied using a pendulum impact tester, tension tester, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TG). The results showed that PEB-g-MAN has an excellent toughening effect on SAN resin. The notched impact strength of the blends (containing 25 wt% PEB) was 63.3 kJ/m2, which was nearly 60 times that of SAN resin. The brittle-ductile transition of SAN/PEB-g-MAN blends occurred when the weight percentage of PEB was between 17.5 and ~20 wt%. SAN and PEB-g-MAN were partially miscible. The toughening mechanism of the blends changed with the PEB content. When the PEB content was low, the toughening mechanism of the blends was branching and termination of cracks with slight cavitation. As the content of PEB increased, the toughing mechanism gradually changed from branching and termination of crack with slight cavitation to both branching and termination of crack and cavitation, to extensive cavitation, and finally to shear yielding accompanied by cavitation. The phase structure of the blends changed from a “sea-island’’ structure to a cocontinuous structure as the PEB content increased. ATG analysis showed that the thermal properties of the SAN resin in the blends were enhanced by adding the PEB-g-MAN.  相似文献   

15.
The aging property of poly(1-butene) in which different antioxidant systems were added was characterized by its physical and mechanical properties before and after aging for 300 h in a hot air aging box. In addition, the oxidation induction time (OIT) of all designed samples was tested. The result demonstrated that the primary antioxidant pentaerythritol tetrakys 3-(3,5-ditert-butyl-4-hydroxyphenyl) propionate performed better than n-octadecyl-β-(4-hydroxy-3,5-di-tert -butyl-phenyl)-propionate. The anti-aging effect of the secondary antioxidant was ranked in the order bis-(2,4-di-tert-butyl-pheny)-phosphiterythritol diphosphite better than tns-(2.4-di-tert-butyl)-phosphite, with both better than distearyl thiodipropionic acid. Confirmation of oxidation of the polymer was made by IR analysis and a general oxidation mechanism scheme for poly(1-butene) is presented.  相似文献   

16.
Poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites were prepared by combining solid-state shear milling (S3M) technology with melt intercalation. Compared with the composite obtained by simple melt intercalation, more MMT layers were exfoliated and apparently oriented along the injection molding direction in the nanocomposite prepared by combining S3M technology and melt intercalation, which greatly increased the orientation degree of MMT, resulting in the greater interactions between PVA and MMT layers. Simultaneously, this also promoted the orientation of PVA molecules and produced effective nucleation of the crystallization of PVA. Consequently, the thermal stability and mechanical properties of PVA were obviously improved. For instance, when the MMT content was 3 wt%, the tensile strength and modulus of the nanocomposite with MMT prepared by S3M were 98.9 MPa and 3.1 GPa, respectively, increasing by 52% and 63.2% compared with PVA.  相似文献   

17.
Poly(vinylidene fluoride)/hollow glass microspheres (PVDF/HGMs) composites were prepared by using lanthanum chloride surface modified HGMs. The morphology, structure, and crystallization of the PVDF/HGMs composites were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), respectively. The results showed that the interaction between the HGMs and the PVDF was improved by lanthanum chloride modification. The crystal structure of the PVDF was not changed by the HGMs, but the crystallinity was decreased. In addition, the Jeziorny and the Mo methods were used to analyze the non-isothermal crystallization kinetics. The results showed that the HGMs decreased the crystallization rates and extended the crystallization time of the PVDF.  相似文献   

18.
Epitaxial graphene is synthesized by silicon sublimation from the Si-terminated 6H–SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigated. X-ray photoelectron spectroscopy spectra and atomic force microscopy images reveal that the epitaxial graphene thickness increases and the epitaxial graphene roughness decreases with the increase in graphitization temperature. This means that the thickness and roughness of epitaxial graphene films can be modulated by varying the graphitization temperature. In addition, the electrical properties of epitaxial graphene film are also investigated by Hall effect measurement.  相似文献   

19.
借助超声技术采用一种简便易行的共沉淀方法制备出聚偏二氟乙烯(PVDF) /钇铕稀土氧化物((Y0.97Eu0.03)2O3)纳米粒子发光纳米复合材料。复合材料的断面形貌和(Y0.97Eu0.03)2O3纳米粒子在PVDF基体中的分散状态通过扫描电子显微镜(SEM)进行了研究,其发光性质通过荧光光谱进行表征。SEM结果表明:当(Y0.97Eu0.03)2O3纳米粒子添加量在1% ~5%时,(Y0.97Eu0.03)2O3纳米粒子在PVDF基体中形成尺寸在50 nm~2μm的团聚体,其尺寸随(Y0.97Eu0.03)2O3添加量增加而增大;当(Y0.97Eu0.03)2O3添加量小于1%时, (Y0.97Eu0.03)2O3纳米粒子在PVDF基体中实现了较好分散。发光光谱结果表明制备的纳米复合材料具有明显的红光发射特征,对应于(Y0.97Eu0.03)2O3纳米粒子的本征发射。制备的高分子发光纳米复合材料将来有望在光学材料中获得应用。  相似文献   

20.
Poly(L-lactic acid) (PLA) samples prepared by hot pressing were treated by two different processes: process a—quenching of the molten specimens in water, then annealing at high temperatures; process b—direct crystallization at high temperatures from the molten specimens. The crystal modification and morphology of PLA were investigated by differential scanning calorimetry, dynamic mechanical analysis, polarized light microscopy, and wide-angle X-ray diffraction. In the case of process a, the α′ (disordered α) crystal modification was formed at relatively low annealing temperature (T a < 100°C), while the ordered α phase was formed in the case of process a at high T a (> 100°C) and process b. Furthermore, in process a, the nucleation density of spherulites was higher and the radius of the spherulites was much smaller compared with that of the spherulites formed by process b. The effects of crystal modification and morphology on the impact behaviors of PLA were investigated by notched Izod impact testing. The macroscopic fracture toughness was discussed in terms of the microscopic structures. Finally, we suggest an alternative approach for the preparation of high-performance PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号