首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A novel water-soluble tetraarylporphyrin-containing polymer has been synthesized by the reaction of bromoalkyl-containing poly(N-isopropylacrylamide) with 5-(4-pyridyl)-10,15,20-tri(4-methoxyphenyl)porphyrin. Some physicochemical properties of the obtained polymers are reported. It has been shown that a strong interaction between the porphyrin units takes place in liquid aqueous medium at temperatures below the lower critical solution temperature (LCST). This phenomenon results in considerable broadening of the Soret band in the absorption spectrum and in strong quenching of fluorescence. Higher than LCST fluorescence enhancement is observed.  相似文献   

2.
Fluorescence techniques, including lifetime, quenching, and time-resolved anisotropy measurements (TRAMS), were used to study microgel systems based upon N-isopropylacrylamide (NI-PAM) using pyrene as a fluorescent probe. These experiments have revealed that poly(N-isopropylacrylamide) (PNIPAM) nanoparticles undergo a phase transition at a lower critical solution temperature (LCST), of ca. 34°C, which involves collapse of the particles into compacted, hydrophobic spheres. A degree of control over the LCST has been achieved by copolymerization of NIPAM with varying amounts of dimethylacrylamide (DMAC). Incorporation of DMAC into the gel has the effect of changing the hydrophobic to hydrophilic balance and shifts the LCST to a higher temperature. Fluorescence methods indicate that the NIPAM/DMAC gels are of a more open, water-swollen nature above the LCST than that of their PNIPAM counterparts.  相似文献   

3.
The aim of the work presented in this paper is to help in the understanding of the lower critical solution temperature (LCST) fluid phase behaviour exhibited by polymer solutions. It is well recognized that the LCST in polymer solutions is a consequence of density (compressibility) effects; the solvent is much more compressible than the polymer and the increasing difference in compressibility when the temperature is increased leads to a negative volume of mixing. The separate roles that the repulsive and attractive intermolecular interactions play in this regard are less well understood. In this study we use the Wertheim first-order thermodynamic perturbation theory (TPT1) [Wertheim, M. S., 1987, J. chem. Phys., 87, 7323; Chapman, W. G., Jackson, G., and Gubbins, K. E., 1988, Molec. Phys., 65, 1057] to describe the phase equilibria of model polymer solutions of hard spheres and hard-sphere chains where the diameter of the solvent and the polymeric segments are the same (symmetrical system). The thermodynamic functions (volume, enthalpy, entropy and Gibbs function) of mixing are determined to assess the possibility of a demixing instability in such a system. No fluid-fluid phase separation is found for the purely repulsive (athermal) system, regardless of the chain length of the polymer. The role of the attractive interactions is then investigated by incorporating attractive interactions at the mean-field level; the simplest system with equivalent (symmetric) solvent-solvent, solvent-polymer segment, and polymer segment-polymer segment interaction energies is examined. The attractive interactions are found to be essential in describing the liquid-liquid phase separation; LCST behaviour is found for mixtures with ‘polymer’ chains of seven segments or more. In this case we show that the phase behaviour is driven by an unfavourable (negative) entropy of mixing due to an increase in the density of the solvent on addition of small amounts of polymer. We also determine the thermodynamic properties of mixing for a system of spherical molecules of the same size with directional interactions that give rise to LCST and closed-loop behaviour. As expected the mechanism for phase separation in such systems is very different to that in polymer solutions.  相似文献   

4.
利用原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)合成了分子量分布较窄的聚甲基丙烯酸N, N-二甲氨基乙酯{Poly\[2 (diethylamino)ethylmethacry-late], PDMAEMA}并通过对液体核磁共振氢谱(1H NMR)化学位移以及弛豫时间(T1、T2)的测量,研究了聚合物PDMAEMA的温度敏感、pH敏感以及离子敏感3种环境敏感行为. 发现聚合物链段的运动性,以及温度和离子强度诱导的相变行为,都与体系的pH值具有强依赖关系. 室温下,聚合物链段的运动性随pH值的增大而降低. 酸性条件下,聚合物表现出离子敏感性,而不表现出温度敏感性. 碱性条件下,聚合物表现出温度敏感性,不表现出离子敏感性.  相似文献   

5.
Biocompatible, highly interconnected microporous poly(L-lactic acid) (PLLA) foams with nanofibrous structure, containing pores with average diameter below 1 μm and fibers with diameters of 102 nm scale, were prepared through the thermally induced liquid–liquid phase separation (TIPS) method consisting of quenching of the PLLA solution, freeze extraction with ethanol, and vacuum drying. Diverse foam morphologies were obtained by systematically changing parameters involved in the TIPS process, such as polymer concentration, solvent composition, and quenching temperatures. The morphology of different foams was examined by scanning electron microscopy to characterize the pore size and the pore size distribution. The results showed that most porous foams had a nanofibrous structure with interconnected open pores. In the case of using tetrahydrofuran (THF) as solvent, the higher the PLLA concentration, the smaller the average pore diameter and the narrower the pore size distribution. In the case of using the mixed solvents of THF/DOX (1,4-dioxane) with higher than 6/4 volume ratio, there appeared a maximum value of average pore diameter and a widest pore size distribution at 0.09 g/mL PLLA concentration. The average pore diameter of the foams increased with increasing DOX content in the mixed solvent and ranged from 0.2 to 0.9 μm depending on the process parameters. When the DOX content reached 60% by volume, the morphology of the foams contained some large closed pores with diameter ranging from 1 to 10 μm. By decreasing the quenching temperature, the average pore diameter of foams decreased and the pore size distribution became narrower. All the pore size distribution fit F-distribution equations.  相似文献   

6.
Deuterium NMR spectroscopy has been employed to characterize the concentration dependence of orientational order in DMPC/DHPC bicellar solutions with molar ratiosq= [DMPC]/[DHPC] = 3.3, 2.7, and 2.3. The stability of a discotic nematic phase can, in general, be predicted from a simple Onsager picture involving the size and concentration of the mesogenic unit, but for the bicellar solutions this model is not adequate. Specifically, macroscopic alignment is observed at total lipid concentrations well below that, 1–10% (w/w) predicted by Onsager's model. Thus the discotic nematic phase is stable to ≈3–5% (w/w) forq= 3.3–2.3, and the bicellar order is highest just before phase separation occurs at the minimum total phospholipid concentration. This implies the presence of a DHPCbic DHPCsolequilibrium in establishing bicellar size, thereby extending the range of concentrations for which alignment occurs. Bicellar morphology has been verified for a wide range of concentrations, temperatures, andq-values, but as viscosity measurements demonstrate, major morphological changes take place as the temperature is reduced below 30°C.  相似文献   

7.
采用分子动力学(MD)模拟方法,研究了二元体系中相分离过程、粒子的扩散系数以及相分离域尺寸大小随温度的变化规律.发现,相分离域随温度的生长过程可以分为两个阶段,分别是温度比较高的快速生长阶段和低温时的稳定生长阶段;相分离体系中系统的扩散激活能不是常数,而是一个随温度变化的函数,并且当温度高于60 K时,满足关系式E(T)=a+bTc.讨论了组元尺寸的变化对相分离过程的影响.结果表明,随两组元中某一组元 关键词: 相分离 扩散 分子动力学模拟  相似文献   

8.
Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu–Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200?°C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300?°C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.  相似文献   

9.
We present an analytic solution for the d-dimensional (d > 1) hard-sphere free flight trajectories in a thermostatted colour field. The solution shows that particles can only reach a finite distance in the direction perpendicular to the field in the absence of collisions. Using a numerical algorithm we designed to simulate many-body hard-sphere systems with curved trajectories, we study the onset of the instability leading to phase separation in the two-dimensional case for a range of field strengths and three densities. For the two fluid densities we find that phase separation occurs for sufficiently strong fields regardless of the initial configuration, and that the phase-separated state eventually becomes a collisionless, non-ergodic steady state. For solid densities the phase-separated configuration is stable and conducting, but is not an attractor for other charge distributions because of the impossibility of particle rearrangement.  相似文献   

10.
Electronic phase separation consisting of the metallic and insulating domains with 50-100 microm in diameter is found in the organic Mott system kappa-[(h8-BEDT-TTF)(1-x)(d8-BEDT-TTF)x]2Cu[N(CN)2]Br by means of scanning microregion infrared spectroscopy using the synchrotron radiation. The phase separation appears below the critical end temperature 35-40 K of the first-order Mott transition. The observation of the macroscopic size of the domains indicates a different class of the intrinsic electronic inhomogeneity from the nanoscale one reported in the inorganic Mott systems such as high-Tc copper and manganese oxides.  相似文献   

11.
In recent years there have been major advances in our understanding of the mechanisms of phase separation in polymer and copolymer blends, to the extent that good control of phase-separated morphology is a real possibility. Many groups are studying the computational simulation of polymer phase separation. In the light of this, we are exploring methods which will give insight into the mechanical response of multiphase polymers. We present preliminary results from a process which allows the production of a two-dimensional finite-element mesh from the contouring of simulated composition data. We examine the stretching of two-phase structures obtained from a simulation of linear Cahn-Hilliard spinodal phase separation. In the simulations, we assume one phase to be hard, and the other soft, such that the shear modulus ratio G is large (>or= 10(3)). We indicate the effect of varying composition on the material modulus and on the distribution of strains through the stretched material. We also examine in some detail the symmetric structures obtained at 50% composition, in which both phases are at a percolation threshold. Inspired by simulation results for the deformation of these structures, we construct a "scaling" theory, which reproduces the main features of the deformation. Of particular interest is the emergence of a lengthscale, below which the deformation is non-affine. This length is proportional to G(1/4), and hence is still quite small for all reasonable values of this ratio. The same theory predicts that the effective composite modulus scales also as G(1/4), , which is supported by the simulations.  相似文献   

12.
A propylene homopolymer and three copolymers with 1-decene containing 1.82, 3.55, and 7.83 mol% of comonomer units, respectively, were prepared with metallocene catalyst and the phase behavior in the melt of these polymers was studied using simultaneous synchrotron small-angle x-ray scattering and differential scanning calorimetry. The results show that the phase behavior of the melt varies with comonomer content and the copolymers tend to be phase-separated with increasing comonomer content. The phase separation in the melt of the propylene–1-decene copolymers was further confirmed by the fitting of the experimental data with Teubner–Strey micro-emulsion model and a transition from the phase-separated melt to the disordered melt was observed. We tentatively attribute this phenomenon to the inhomogeneous intra-molecular composition distribution at high levels of comonomer and the incompatibility of propylene sequences with different lengths. Such a finding is consistent with the facts of multiple melting peaks and mixed γ and α crystal phases in the polymer solids. Since the phase behavior depends on temperature, the effect of annealing temperature, from which the copolymers were cooled, on the nonisothermal crystallization of the copolymers was also investigated. It is found that higher degree of phase separation accelerates the crystallization but reduces the crystallization enthalpy.  相似文献   

13.
14.
Abstract

The morphology development in model polymer blends was investigated in relation to the processing pathway. Reaction‐induced phase separation was used to make polyoxyethylene (POE) and polystyrene (PS) blends from a solution of POE/styrene. As the styrene underwent polymerization by photo‐initiation with ultraviolet light, phase separation, and phase inversion were induced, whereby the POE became the matrix phase. Optical microscopy showed that liquid–liquid (L–L) phase separation occurred soon after the styrene polymerization was initiated. Nucleation and growth was identified as the mechanism of L–L phase separation. Polystyrene/styrene‐rich domains formed in a POE/styrene‐rich matrix. The domain size developed until arrested by the POE liquid–solid phase separating and crystallizing, since the experiments were conducted below the melt temperature of POE. The POE crystal growth process also followed a nucleation and growth mechanism. The time to the onset of crystallization was observed to decrease as the POE content increased, until the POE formed a saturated solution in styrene. As the crystallization onset time decreased, the PS‐rich domain size also decreased. The phase diagram previously established can now be used to describe (and predict) the number density and size of the PS‐rich domains in the POE matrix of the blends.  相似文献   

15.
Core–shell nanoparticles are known to form in binary systems using a one‐step gas‐condensation deposition process where a large, positive enthalpy of mixing provides the driving force for phase separation and a difference in surface energy between component atoms creates a preferential surface phase leading to a core–shell structure. Here, core–shell nanoparticles have been observed in systems with enthalpy as low as ?5 kJ mol?1 and a surface energy difference of 0.5 J m?2 (Mo–Co). This suggests that surface energy dominates at the nanoscale and can lead to phase separation in nanoparticles. The compositions and size dependence of the core–shell structures are also compared and no core–shell structures are observed below a critical size of 8 nm.  相似文献   

16.
TF and ZFSR-investigations were performed on high purity CuO powder. By TF measurements a phase transition to the ordered state was observed at 227K. A commensurate-incommensurate phase transition was detected at 213K by ZF measurements. In the commensurate phase we observed the Larmor precession. Four signals were detected below 55K, but by increasing temperature above 190K, precession became having only one component. This fact may be explained by muons tunneling between equivalent sites. In the incommensurate phase the Larmor precession was not detected because of too large damping.  相似文献   

17.
We investigate the relaxation dynamics of nonequilibrium carriers in organic conductors κ-(BEDT-TTF)(2)Cu[N(CN)(2)]X (X=Br and Cl) using ultrafast time-resolved optical spectroscopy. The dynamics for both salts show similar temperature dependences, which is well characterized by the carrier relaxation across the pseudogap (PG) of the magnitude Δ(PG) ≈ 16 meV for Br salt and 7.0 meV for Cl salt. On the other hand, only the Br salt shows an abrupt increase of the decay time at low temperature, indicating an additional decay component associated with the superconducting (SC) gap below T(c). The fluence dependent dynamics at low temperature evidences the superposition of the SC component onto the PG component. These results indicate a metallic-insulating phase separation in the Br salt triggered by photoexcited nonequilibrium carriers.  相似文献   

18.
Using a novel slave boson mapping, which was recently proposed by us for two Anderson impurities embedded in a metal, we present here spectral functions for all pseudoparticles involved in the mapping. These were numerically calculated in the framework of the Non-Crossing Approximation for different temperatures and inter-impurity distances, both for the degenerate (Nf = 6) and nondegenerate (Nf = 2) models. For the nondegenerate case, temperature dependencies of the partial occupancies and the spin-spin correlation function suggest that an antiferromagnetic (AFM)-like ground state is formed at suitable inter-impurity separation. By contrast, Kondo quenching of the impurity moments takes place for the isotropic Nf = 6 case even when a direct AFM interaction is introduced in order to amplify the indirect (inherent) one. Numerical calculations are in agreement with our previous prediction [Phys. Rev. B 47, 14,297 (1993)] that no AFM-like ground state can appear for two isotropic degenerate impurities.  相似文献   

19.
段华  李剑锋  张红东 《物理学报》2018,67(3):38701-038701
结合离散空间变分方法和耗散动力学研究了二维两组分带电囊泡的形变耦合相分离,系统地考察了囊泡带电量组分含量、带电组分的电荷密度、两组分间的相容性和温度等因素对形变耦合相分离动力学的影响.模拟结果表明电荷引入可增加不同组分间的表观相溶性.当温度较高时,静电相互作用可直接抑制囊泡相分离,避免了同种组分的团聚;当温度较低时,静电相互作用则可明显增加分相相区数目,使其呈微观相分离,从而避免了同种组分大范围的团聚.  相似文献   

20.
摘要:巨囊泡作为细胞的简化模型,其分相与出芽机理及动力学规律已引起许多领域科学家的关注。在富含胆固醇的典型生物膜体系如二棕榈酰磷脂酰胆碱DPPC(2-dihexadecanoyl-rac-glycero-3phosphocholine)/二油酰磷脂酰胆碱DOPC(dioleoyl-phosphatidylcholine)/胆固醇(Chol)的三组分形成的巨囊泡作为模型,从高温退火至低温会发生相分离,形成微畴。实验中借助荧光显微镜观察生物膜体系侧向分离的相结构图。实验发现,体系各组分的不同会影响磷脂膜的相结构和膜内微畴的成长,固定 DOPC/DPPC为1:1的前提下,微畴尺寸随着胆固醇参入量的增加而变大。最后运用理论进一步分析了微畴的成长机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号