首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotactic polypropylene/poly(cis‐butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. The influence of PcBR content on crystalline morphology and nonisothermal crystallization behaviors of iPP was investigated by polarized optical microscopy (POM), small angle light scattering (SALS), and differential scanning calorimetry (DSC). The POM showed that an increase of PcBR ranging from 10 vol% to 40 vol% led to less perfection of spherulites, vaguer boundaries between spherulites, and smaller spherulite size, which was quantitatively validated by SALS. The presence of PcBR also remarkably affected the nonisothermal crystallization behaviors of iPP. An addition of PcBR caused higher crystallization peak temperature and a faster crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak temperature moved to lower temperature and the crystallization rate increased as the cooling rate increased. The Ozawa and combined Avrami and Ozawa equations were used to describe the nonisothermal crystallization process of iPP and blends. The combined Avrami and Ozawa equation was more appropriate for the crystallization of the blends. Crystallization activation energy of iPP and blends was calculated by the Kissinger equation; the result showed that crystallization activation energy decreased as the content of PcBR increased from 30 vol% to 40 vol%.  相似文献   

2.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. Isothermal crystallization and miscibility for neat iPP and blends of iPP/PcBR were investigated by differential scanning calorimetry. The presence of PcBR remarkably affected isothermal crystalline behaviors of iPP. An addition of PcBR caused shorter crystallization time and a faster overall crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak was broader and the supercooling decreased as the crystallization temperature increased. The Avrami equation was suitable to describe the primary isothermal crystallization process of iPP and blends. The addition of PcBR led to an increase of values of the Avrami exponent n, which we suggest was because the blends had a stronger trend of instantaneous three-dimensional growth than neat iPP. The equilibrium melting point depression of the blends was observed, indicating that the blends were partly miscible in the melt.  相似文献   

3.
聚合物共混过程中的小角激光光散射在线分析(英文)   总被引:1,自引:0,他引:1  
利用激光小角背散射法对不相容聚合物体系聚苯乙烯/顺丁橡胶(PS/PcBR)共混过程中结构变化进行了在线分析。分散相颗粒尺寸由Debye散射理论中相关距离(αc)及平均直径(D描述)。由相关距离随组成比变化显示,在PS/PcBR共混质量比为50/50时出现相反转,即当PS含量小于50%时PS为分散相,当PS含量大于50%时PS为连续相,PS含量为50%时体系为双连续相。分散相平均直径随共混时间延长而降低,其变化过程满足颗粒粉碎理论:dt=-bD-ndD,系数n和b与共混条件、共混材料特征及共混物两相含量等有关。共混物经不同共混时间后试样由扫描电子显微镜分析结果与激光小角背散射分析结果一致。  相似文献   

4.
Thermal properties of polypropylene with poly(cis-butadiene) rubber (iPP/PcBR) blends have been measured by differential scanning calorimetry (DSC), and the melting point Tm, crystallization temperature Tc, enthalpy Δ H (melting enthalpies and crystalline enthalpies), and equilibrium melting point T0 m have been measured and calculated. The variation of Tm, Tc, Δ H and T0 m with composition in the blends was discussed, showing that an interaction between phases is present in iPP/PcBR blends. The degree of supercooling characterizing the interaction between two phases in the blends and the crystallizability of the blends which bears a relationship to the composition of the blends was discussed. The kinetics of isothermal crystallization of the crystalline phase in iPP/PcBR blends was studied in terms of the Avrami equation, and the Avrami exponent n and velocity constant K were obtained. The Avrami exponent n is between 3 and 2, meaning that iPP has a thermal nucleation with two dimensional growths. The variation of the Avrami exponent n, velocity constant K, and crystallization rate G bear a relation to the composition of the blends, n increases with increasing content ofPcBR. K also increased with increasing content of PcBR. All of the K for the blends are greater than for pure iPP. The crystallization rate G (t1/2) depends on the compositions in the blends; all G of the blends are greater than for iPP.  相似文献   

5.
Nonisothermal crystallization nucleation and its kinetics of in‐situ fibrillar and spherical dispersed phases in poly (phenylene sulfide) (PPS)/isotactic polypropylene (iPP) blends are discussed. The PPS/iPP in‐situ microfibrillar reinforced blend (MRB) was obtained via a slit‐die extrusion, hot stretching, and quenching process, while PPS/iPP common blend with spherical PPS particles was prepared by extrusion without hot stretching. Morphological observation indicated that the well‐defined PPS microfibrils were in situ generated. The diameter of most microfibrils was surprisingly larger than or equal to the spherical particles in the common blend (15/85 PPS/iPP by weight). The nonisothermal crystallization kinetics of three samples (microfibrillar, common blends, and neat iPP) were investigated with differential scanning calorimetry (DSC). The PPS microfibrils and spherical particles could both act as heterogeneous nucleating agents during the nonisothermal crystallization, thus increasing the onset and maximum crystallization temperature of iPP, but the effect of PPS spherical particles was more evident. For the same material, crystallization peaks became wider and shifted to lower temperature when the cooling rate increased. Applying the theories proposed by Ozawa and Jeziorny to analyze the crystallization kinetics of neat iPP, and microfibrillar and common PPS/iPP blends, both of them could agree with the experimental results.  相似文献   

6.
Abstract

Phase formation and evolution of high‐impact polystyrene/poly(cis‐butadiene) rubber (HIPS/PcBR) blends during melting and mixing processes were investigated by scanning electron micrographs analysis. The diameter, d p , was used to describe the evolution of the phase morphology of HIPS/PcBR blends during mixing. Scale functions, S N (r) and S M (r), were defined to confirm the self‐similarity of the phase morphology. The plots of S N (r)/S N (r) m [the maximum of S N (r)] vs. r/r m (the maximum of r) and S M (r)/S M (r) m [the maximum of S M (r)] vs. r/r m showed the phase morphology had self‐similarity. Furthermore, the fractal dimension, D, of different HIPS/PcBR blends was calculated by two different methods (fractal measure relations and box‐counting methods). The results showed that the fractal dimension was an effective parameter for study of the phase morphology of polymer blends.  相似文献   

7.
The blends of polyamide 6/acrylonitrile-butadiene-styrene (PA6/ABS), with added styrene-maleic acid copolymer (SMA) compatibilizer, were prepared through melt mixing in an internal mixer. The effects of blend composition and various process conditions, as well as the addition of multi-wall carbon nanotubes (MWCNTs) to the blends, on the morphology and mechanical properties were investigated. The morphology of the blends and blend nanocomposites were observed by scanning electron microscopy (SEM) and analyzed using an image analysis technique. The mechanical behavior of the blends was investigated by tensile and also impact testing. The results showed that the blend composition as well as the processing conditions significantly affected the morphology and mechanical properties of the PA6/ABS blends. Among the various compositions, the blend with 36?wt.% of ABS and 4?wt.% of SMA compatibilizer exhibited the best mechanical properties. Comparing various speeds and times of mixing, it was found that less mixing speed and longer mixing times resulted in the favorable morphology and conditions for achievement of the desired toughness for the polyamide 6. By adding different amounts of MWCNTs to the blends, it was found that the presence of the carbon nanotubes changed the viscosity of the resulting nanocomposite and thus changed the morphology. These nanocomposites also showed an improvement in mechanical properties. The MWCNTs acted as a second compatibilizer, resulting in a synergistic effect on the mechanical properties of the PA6/ABS blend nanocomposites.  相似文献   

8.
In this study, the effect of several parameters, including composition, order of mixing, viscosity, and interfacial tension, on the phase structure and size of dispersed particles of polyamide 6 (PA6)/poly(styrene-co-acrylonitrile) SAN/poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) ternary blends was investigated. Moreover, the effect of addition of different ratios of reactive SEBS (maleic anhydride grafted-SEBS) and non-reactive SEBS at a fixed order of mixing and composition of 70/15/15 (PA6/SAN/SEBS + SEBS-g-MAH) on the mechanical properties of ternary blends was examined. Scanning electron microscopy (SEM) micrographs showed that among the studied parameters, interfacial tension and viscosity of dispersed phases were the leading factors in the formation of morphology and size of dispersed droplets. Mechanical results revealed that in contrast to the expectation, formation of core/shell structure of PA6/SAN/SEBS ternary blends did not result in a significant increasing of impact strength. The highest impact strength was achieved when a 50/50 weight ratio of SEBS/SEBS-g-MAH was used.  相似文献   

9.
Different methods for characterizing the morphology of multiphase blends were applied to a blend of thermoplastic polyurethane with 20 wt% polypropylene as the dispersed phase. Optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and light scattering were compared. The microscopy methods were evaluated with respect to their suitability for quantitative image analysis for determination of the particle size distribution. Comparison of the particle size distributions revealed that the dependence of the measured particle size on the method of preparation and technique was not very pronounced. The main difference resulted from cutting the particles outside their maximum diameter. The measured particle sizes determined with methods that analyze the whole particles, such as SEM on separated particles and laser light scattering, are larger than those measured on cut specimens. The factor 4/π valid in monodisperse systems for the ratio between the real particle size and that measured on sections was found also to be applicable to this polydisperse blend system. Although light micros-copy requires the least preparation efforts, it is a reliable method for this blend system.  相似文献   

10.
An optical polarizing microscope with a hot shear stage was used for an in‐situ investigation of the influences of poly(phenylene sulfide) (PPS) microfibrils on isothermal crystallization of isotactic polypropylene (iPP) under shear. As the nucleation sites on the PPS microfibril's surface are not able to induce a transcrystalline layer, there are only spherulites generated in a PPS/iPP in‐situ microfirbillar blend in quiescent condition. Applying shear during isothermal crystallization, the crystalline morphology greatly changes. There are fibrillar nuclei induced after steady shear with a shear rate of 5 and 10 s–1, and these nuclei formed fibrillar crystals after crystallization completion. Two opposite effects coexist in PPS/iPP in‐situ microfibrillar blends during shear‐induced isothermal crystallization; one is the obstructive effect of PPS microfibrils on the iPP molecular chains orientation; the other is the positive effect provided by stress between fiber and matrix, generated by shear, which reduces the potential barrier of crystallization. The results of wide angle x‐ray diffraction (WAXD) show that there are β‐iPP crystals generated in neat iPP and PPS/iPP blends, but that PPS microfibrils have an inhibiting influence on the formation of β‐iPP.  相似文献   

11.
The formation of β-iPP (β-modification of isotactic polypropylene) in the iPP/ABS (acrylonitrile–butadiene–styrene), iPP/styrene–butadiene (K resin), and iPP/styrene–acrylonitrile (SAN) blends were studied using differential scanning calorimery (DSC), wide angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM). It was found that α-iPP (α-modification of isotactic polypropylene) and β-iPP can simultaneously form in the iPP/ABS blend, whereas only α-iPP exists in the iPP/K resin and iPP/SAN blend samples. The effects of phase composition and thermal conditions on the β-iPP formation in the iPP/ABS blends were also investigated. The results showed that when the ABS content was low, the ABS dispersed phase distributed in the iPP continuous phase, facilitating the growth of β-iPP, and the maximum amount of β-iPP occurred when the composition of iPP/ABS blend approached 80:20 by weight. Furthermore, it was found that the iPP/ABS blend showed an upper critical temperature T c * at 130°C for the formation of β-iPP. When the crystallization temperature was higher than the T c *, the β-iPP did not form. Interestingly, the iPP/ABS blend did not demonstrate the lower critical temperature T c ** previously reported for pure iPP and its blends. Even if the crystallization temperature decreased to 90°C, there was still β-iPP generation, indicating that ABS has a strong ability to induce the β-iPP. However, the annealing experiments results revealed that annealing in the melt state could eliminate the susceptibility to β-crystallization of iPP.  相似文献   

12.
The morphology of carbon nanofoam samples comprising platinum nanoparticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature and the average radius of the platinum particles is about 2.5 nm. The fractal dimension as well as the size distribution parameters of platinum particles varies markedly with the platinum content and annealing temperature. Transmission electron micrographs of the samples corroborate the SANS and SAXS results.   相似文献   

13.
光散射在聚合物共混过程中形态发展研究的应用   总被引:2,自引:2,他引:0  
本文应用光散射法和电子显微镜对聚丙烯/尼龙1010(PP/PA1010=90/10,体积比)共混体系的微观形态发展进行了研究。利用激光背散射在线系统采集了散射图象,由散射光斑的积分强度和Debye Bueche理论计算的相关距离讨论了共混物形态演化过程。结果表明,这一体系在共混初期(即1分钟以前)形态有较大变化,这一阶段是聚合物在密炼机中软化、变形和熔融混合的过程。由不同时刻采样并进行电镜观察发现,在共混1分钟以后,共混物的形态确实变化不大,这说明光散射法用于研究聚合物共混过程中的形态发展是可行的。  相似文献   

14.
The effect of organomodified nanoclay on the morphology and properties of a (70/30 w/w) nylon 6/poly(methyl methacrylate) (PMMA) blend prepared by a melt processing method was investigated. The number average domain diameter (Dn ) of the dispersed PMMA phase was found to decrease with the addition of a small amount [0.5 per hundred resin (phr)] of clay in the blend. A much finer dispersion of the minor phase in the presence of a higher amount (5 phr) of clay indicated better mixing efficiency and improved morphology in the blend. X-ray diffraction indicated the exfoliation of the clays in the nylon 6 matrix, whereas PMMA chains only intercalated into the clay layers. However, the same effect of the clay was not observed in a (30/70 w/w) nylon 6/PMMA blend when nylon 6 became the dispersed domains. In the (30/70 w/w) nylon 6/PMMA blend, the addition of organomodified nanoclay (up to 2 phr) increased the Dn of the nylon 6 domains by preferential location of the clays inside the nylon 6 domains. Addition of styrene-maleic anhydride (SMA) copolymer effectively reduced the Dn of disperse phases in both compositions of the nylon 6/PMMA blends. Thus, in nylon 6/PMMA blends, clay platelets could prevent the coalescence of dispersed domains during melt mixing as long as it was dispersed in the matrix phase of the blend. Mechanical properties and thermal stability of the blends were also improved in the presence of clay.  相似文献   

15.
Blends of ethylene–methyl acrylate–glycidyl methacrylate terpolymer (E‐MA‐GMA, a random terpolymer) and polycarbonate (PC) were prepared in a Haake torque rheometer and the rheological properties, phase morphology, and thermal behavior were investigated. The graft reactions of PC terminal hydroxyl groups with the epoxy groups of E‐MA‐GMA and the in situ formation of the E‐MA‐GMA‐g‐PC copolymers at the interface were illustrated by the improved mixing torque and melt viscosity in E‐MA‐GMA/PC blends. Typical variation and significant deformation of the dispersed phase was observed in E‐MA‐GMA/PC blends with different composition, where PC was the matrix. With the E‐MA‐GMA content increasing, a complex co‐continuous phase structure with some dispersed E‐MA‐GMA particles wrapped in the continuous PC phase was present, indicating strengthened interfacial adhesion. When the E‐MA‐GMA content was higher than the PC component, fibrous structure of the dispersed PC phase in the E‐MA‐GMA matrix was caused by shear flow and interfacial interaction. DSC studies showed that the melting point of E‐MA‐GMA shifted to lower temperature with the increase of PC content, indicating that the enhanced interaction and graft structure hindered the process of crystallization and crystal growth.  相似文献   

16.
The skin-core hierarchy structure of isotactic polypropylene (iPP) injection-molded parts was successfully suppressed by the introduction of glass fibers (GFs) as a result of the “balance effect.” The pure iPP presents a large fraction of spherulitic core layer, while the thickness of the core layer of the iPP/GF composites was greatly thinner. For pure iPP, the morphology can be divided into three regions along the thickness direction: skin layer, shear layer, and core layer. However, the morphology of the sample with 7 wt% GF was so homogenized that it could not be roughly divided into the three regions. Furthermore, the area of the shear layer becomes larger with increasing GF content. It was full of shish-kebab-like cylindrite structures. These results indicated that GF can homogenize the gradient of shear stress perpendicular to the flow direction. It was confirmed that the GF could be used to stabilize the shear-induced nuclei, especially in the core region, and resulted in the enhanced crystallinity of the β-form. Based on our investigation, a schematic model was proposed to interpret the “balance effect” of GF on suppression of the skin-core structure.  相似文献   

17.
利用Cluster-cluster aggregation (CCA)模型,模拟了由相同数目球形原始微粒凝聚而成的四种随机取向气溶胶凝聚粒子.根据物质的电结构,将气溶胶凝聚粒子离散为一系列偶极子,结合离散偶极子近似方法,在获得每一个偶极子的电偶极矩之后,数值计算了气溶胶凝聚粒子散射强度的角分布,并分析了散射强度随入射光入射角度和气溶胶凝聚粒子尺寸参数变化的规律.结果显示:当散射角较小时,气溶胶凝聚粒子取向和入射光的入射角度对散射强度影响不大,当散射角增大时,散射强度则明显依赖于气溶胶凝聚粒子取向和入射光的入射角度;对于不同尺寸参数的气溶胶凝聚粒子,在同一角度入射情况下,随尺寸参数的增加,气溶胶凝聚粒子的散射主要集中于前向散射.  相似文献   

18.
Phase formation, morphology, and their evolution of binary blends of polypropylene with poly(cis‐butadiene) rubber were investigated by a back small angle laser scattering (BSALS) on‐line system and online sampling. The morphology formation process can be divided into three stages: early stage, intermediate stage, and late stage. Phase contrast microscopy (PCM) and small angle laser scattering (SALS) measurements have been introduced to compare with the results of BSALS and the corresponding phase morphology was also observed using scanning electron microscopy (SEM). Structure parameters such as average chord length l¯1 and integral invariant Q were calculated to describe the relationship between phase evolution and processing conditions. Furthermore the velocity constant of the dispersed phase dimension variation k=dQ/dt was calculated at the early stage to describe the relationship with different volume fractions of dispersed phase. The characteristic wavevector q m , and its corresponding maximum intensity I m , increase monotonically with time and vary exponentially with time at the early stage of phase dispersion; the slope yields the change rate constants of domain size for q m and I m , α and β, respectively. The rate constants α and β increase with increasing content of dispersed phase, and α/β ≈1.  相似文献   

19.
We show that the morphology of polymer-based solar cells substantially changes after annealing using small angle neutron scattering. Phenyl-C61-butyric acid methyl ester (PCBM) is found reasonably well dispersed within the poly(3-hexylthiophene) (P3HT) rich phase after initial processing (spin coating). However, the PCBM structure coarsens after annealing, clearly evidenced by the increase in scattering intensity at a small wave vector. The change in morphology at the nanoscale is related to improved device performance and the simultaneous, contradictory, increase in photoluminescence.  相似文献   

20.
The present study focused on the importance of scale effect (micro- and macro-injection molded parts) and iPP content to the formation of epitaxial crystallization and crystal structure formed in injection-molded bars of high-density polyethylene (HDPE)/isotactic polypropylene (iPP) blends. After making the blends with different iPP content via melt mixing, the injection-molded bars were prepared via both micro and conventional injection molding. Hot stage polarized light microscopy (HS-PLM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were used to investigate their morphological and crystal features. The results indicated that an appropriate matching of micro-part and relative high iPP content was most favorable for epitaxial crystallization. The micro-parts had a large fraction of shear layer in comparison with macro-parts. The SEM observations showed that the shear layer of the former consisted of a highly oriented shish-kebab structure. The memory effect of the crystalline structure of the micro-parts and macro-parts at high temperature, investigated in detail through HS-PLM experiments, showed that micro-part had a relatively high memory effect of the preceding crystallization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号