首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methyl methacrylate (MMA)-ethyl methacrylate (EMA) copolymers of different monomer concentrations containing anhydrous ferric chloride were prepared by bulk polymerization at 70°C. TGA studies showed that inclusion of iron salt increases the thermal stability of copolymers by 50°C. Mössbauer spectra of copolymers heated at different temperatures showed the presence of Fe3+ species only, in different environments. The mechanism of thermal stabilization of copolymer has been proposed on the basis of IR, TGA and Mössbauer spectroscopy studies.  相似文献   

2.
The surface and interfacial properties of polymers are important for their applications. In one of our previous articles, we discussed the relationship between the dispersive surface tension component and the density and molecular weight of solvents and polymers to seek a simple and easy method to estimate the rationality of surface tension results of polymers. We found that for 30 organic solvents and 12 polymers, there was a good relationship between the dispersive surface tension and the experiential parameter 1/ρ2 M 0.2 w . In this article, the existence of the squared density term is simply deduced from the general molecular interaction energy equation and is proved with four pairs of polymer/monomer; these are polystyrene/styrene, polyisoprene/isoprene, polymethyl methacrylate/methyl methacrylate, and polyvinyl acetate/vinyl acetate.  相似文献   

3.
EPDM-graft-methyl methacrylate and styrene (EPDM-g-MS) were synthesized by solution graft copolymerization of methyl methacrylate (MMA) and styrene (St) onto ethylene-propylene-diene terpolymer (EPDM). EPDM-g-MS/MS resin blends (MES) tht were prepared by melt blending EPDM-g-MS and methyl methacrylate-styrene copolymer (MS resin). The mechanical properties, compatibility, thermal stabilities and rheological properties of MES were studied by the pendulum impact tester and the tension tester, differential scanning calorimetric (DSC), thermogravimetry analysis (TGA), and the capillary rheometry, respectively. The results showed that EPDM-g-MS had an excellent toughening effect on MS resin; the notched Izod impact strength of MES reached 20.7 kJ/m2 when EPDM content in MES was 25 wt%, about 14 times that of MS resin. EPDM-g-MS and MS resin were partially compatible, and the compatibility increased with an increasing MMA/St ratio of EPDM-g-MS. MES had excellent heat-resistance, which increased as the EPDM content in MES and MMA/St ratio of EPDM-g-MS rose. MES melt flow confirmed pseudoplastic flow characteristics. The apparent viscosity (η a ) of MES decreased with an increasing shearing rate (γ) and temperature, but increased with an increasing EPDM content in MES and MMA/St ratio of EPDM-g-MS. The flow activation energy of MES was lower than that of MS resin.  相似文献   

4.
The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.  相似文献   

5.
Acrylonitrile/methyl methacrylate (A/M), acrylonitrile/ethyl methacrylate (A/E) and acrylonitrile/n-butyl methacrylate (A/B) copolymers containing ferric chloride were prepared by free radical bulk polymerization. TGA studies show that the addition of ferric chloride increases the thermal stability of these copolymers. Mössbauer studies of the copolymers showed the presence of Fe3+ species only. Mössbauer spectra of the copolymer heated at 200°C, 350°C and 500°C did not show a reduction of the Fe3+ species, and α-Fe2O3 was the final product formed.  相似文献   

6.
This contribution demonstrates a method for PVDF microporous membrane modification via surface-initiated activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly from the membrane surface. Three hydrophilic polymers, poly(2-(N,N-dimethylamino) ethyl methacrylate) (PDMAEMA), poly(2-oligo (ethylene glycol) monomethyl ether methacrylate) (POEGMA), and poly(2-hydroxyethyl methacrylate) (PHEMA), were grafted from the PVDF membrane surface in aqueous solution at room temperature. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful covalent tethering of the polymer chains onto the PVDF membrane surface. The gravimetry results indicated an approximately linear increase of the graft yields, up to about 330 μg/cm2 for DMAEMA and 470 μg/cm2 for both HEMA and OEGMA, with the polymerization time. Block copolymer brushes were prepared by chain extension. Water contact angle decreased over 50% for high yields, indicating improved surface hydrophilicity. The effects of the graft polymerization on membrane surface morphology, pore structure and permeability were investigated. It was found that the surface roughness was decreased and the pore size distribution was narrowed. The membrane permeability increased at low graft yields due to the enhanced hydrophilicity and decreased at high graft yields due to the overall reduction of the pore diameters.  相似文献   

7.
A series of poly(ethylene glycol)(PEG)-4,4′-diphenylmethanediisocyanate(MDI)-poly(dimethylsiloxane) (PDMS) multiblock copolymers were synthesized by employing two-step growth polymerization technique. Atomic force microscopy (AFM) observed nanoscopically well-organized phase-separated surfaces consisting of hydrophilic domain from PEG and MDI segments and hydrophobic domain from PDMS segments even with 50 wt.% PDMS in the copolymer, and the multiblock copolymer coatings presented a surface free energy of as low as 6-8 mN m−1.  相似文献   

8.
Summary Two polyampholyte copolymers based on sodium-2-acrylamido-2-methylsulfonate (NaAMPS) and methacryloyloxyethyltrimethylammonium chloride (MADQUAT) have been prepared either in homogeneous solution or by an inverse microemulsion polymerization technique. The copolymer microstructure was shown to depend on the method of preparation. The microemulsion polymerization yields copolymers with a monomer sequence distribution not far from random while those obtained by polymerization in solution have a strong tendency to alternation. The aqueous-solution properties of the two samples have been investigated by viscometry. The results show that the charge distribution along the copolymer chain affects considerably its conformation, in good agreement with recent theoretical studies. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994  相似文献   

9.
1-acryloylpyrrolidine-2-carboxylic acid (APCA) monomer was copolymerized with acrylonitrile (AN) by aqueous suspension polymerization. High molecular weight (HMW) copolymers of AN and APCA [poly(AN-co-APCA)] with different copolymer composition were successfully prepared by employing azobisisobutyronitrile (AIBN) as initiator and polyvinyl alcohol (PVA) as dispersant in a H2O/N,N-dimethylformamide (DMF) mixture at 60°C. The PAN homopolymer and copolymers were characterized by elemental analysis (EA), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The EA results indicated that the content of oxygen increased significantly in PAN copolymers with increasing APCA content. The APCA copolymer composition calculated from the EA was higher than that from 1H NMR spectra. The FTIR spectra of PAN and poly(AN-co-APCA) with different monomer ratios confirmed that the contents of APCA units in the copolymer chains increased with increasing APCA content in the feed. The DSC exotherms revealed that copolymerization with APCA could slow the rate of the exothermic reactions during the heat-treatment processes. The XRD results indicated that the PAN homopolymer and copolymers poorly crystallized and the crystallinity decreased with increasing APCA contents.  相似文献   

10.
Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.  相似文献   

11.
The richly functionalized basal plane bonded to polar organic moieties makes graphene oxide (GO) innately hydrophilic. Here, a methodology to synthesize fluorinated graphene oxide by oxidizing the basal plane of fluorinated graphite, allowing for tunable hydrophobicity of GO, is reported. Fluorine exists as tertiary alkyl fluorides covalently bonded to graphitic carbons, and using magic‐angle spinning (MAS) 13C NMR as a primary tool chemical structures for the two types of synthesized fluorinated graphene oxides (FGOs) with significantly different fluorine contents are proposed. The low surface energy of the C–F bond drastically affects GO's wetting behavior, leading to amphiphobicity in its highly fluorinated form. Ease of solution processing enables the fabrication of inks that are spray‐painted on various porous/non‐porous substrates. These coatings maintain amphiphobicity for solvents with surface tensions down to 59 dyn/cm, thus bypassing existing lithographic means to create similar surfaces. The approach towards fluorinating GO and fabricating graphene‐based surfaces with tunable wettability opens the path towards unique, accessible, carbon‐based amphiphobic coatings.  相似文献   

12.
Surface modification of polypropylene was carried out by entraping a copolymer of polypropylene grafted poly(butyl methacrylate) into polypropylene. The effects of structure of copolymers, contact die and content of modifiers on their surface enrichment were studied by attenuated total reflection infrared spectroscopy (ATR-FTIR), contact angle measurements and scanning electron microscopy (SEM). The results indicated that PPw-g-PBMA could diffuse preferably onto the surface and effectively increase the hydrophilicity of PP. Lower content and higher surface energy die were in favor of the copolymer to enrich on the PP surface. PPw-g-PBMA with low PBMA contents, short length of PBMA distributed in PP with smaller phase domains and favored its selective enrichment on the surface of PP, especially at lower loadings in blends. The modified material exhibited excellent solvent-resistance.  相似文献   

13.
Styrene and 2,2,3,4,4,4-hexafluorobutyl methacrylate copolymers were synthesized by bulk polymerization, and the superhydrophobic copolymer films were prepared subsequently using phase separation technique. The copolymer was dissolved in tetrahydrofuran, and then added ethanol into the solution thereafter, to induce phase separation. The microstructures of the polymer films were controlled by the degree of phase separation, which was enhanced properly by the concentration of ethanol. The surface morphology of the films, observed by environmental scanning electron microscope, is similar to that of the lotus leaf. The contact angle and sliding angle were measured as 154.3° and 5.8°, respectively. The excellent superhydrophobic property demonstrated that the phase separation technique is useful for preparing lotus-like fluoropolymer films.  相似文献   

14.
Surface film properties of the homopolymers polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA) and the copolymer poly(methyl methacrylate)-co-poly(butyl methacrylate) (PMMA-co-PBMA) and their blends with PS have been examined by atomic force microscopy (AFM) and contact angle measurements. The total and the Lifshitz-van der Waals, acid and base components of the surface free energy together with the work of adhesion and its components, the cohesive energy density and the solubility parameters of the homopolymer, copolymer and blend films were determined. Films of about 3 μm were considered. The results are discussed in terms of surface migration mechanisms based on surface free energy and solubilities of the polymers in the solvent, toluene in this paper. AFM imaging and contact angles revealed surface enrichment at the air polymer interface of PBMA for both the PS/PBMA blend and the copolymer PMMA-co-PBMA, whereas the PS/PMMA and PS/PMMA-co-PBMA blend film surfaces show island-like phase-separated structure of typical size 27.4-86.5 nm in diameter and 6.9-15.6 nm in height for PS/PMMA, while for PS/ PMMA-co-PBMA film surface the typical size is 49.6-153.3 nm in diameter and 1.6-14.2 nm in height.  相似文献   

15.
Fluorination of polymer surfaces has technological applications in various fields such as microelectronics, biomaterials, textile, packing, etc. In this study PMMA surfaces were fluorinated using DC glow discharge plasma. Tetrafluoroethane was used as the fluorinating agent. On the fluorinated PMMA surface, static water contact angle, surface energy, optical transmittance (UV-vis), XPS and AFM analyses were carried out. After the fluorination PMMA surface becomes hydrophobic with water contact angle of 107° without losing optical transparency. Surface energy of fluorine plasma-treated PMMA decreased from 35 mJ/cm2 to 21.2 mJ/cm2. RMS roughness of the fluorinated surface was 4.01 nm and XPS studies revealed the formation of C-CFx and CF3 groups on the PMMA surface.  相似文献   

16.
The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) “grafting-through” polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a p \pi - p* \pi^{{\ast}}_{} absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.  相似文献   

17.
Copolymer brushes growing onto magnetic nanoparticles were prepared by surface chain transfer free radical polymerization. Block copolymer brushes (P(PEGMA)-co-PNIPAAm) consist of poly(ethylene glycol) monomethacrylate (PEGMA) and N-isopropylacrylamide monomer. X-ray photoelectron spectroscopy (XPS) characterized the chemical composition of copolymer. Thermogravimetric analysis (TGA) suggested that the amount of copolymer on magnetic nanoparticles decreased with increasing azodiisobutyronitrile (AIBN). The saturation magnetization decreased significantly with increasing P(PEGMA)-co-PNIPAAm. The thermosensitive point is about 43 °C for magnetic nanoparticles with 33.8% P(PEGMA)-co-PNIPAAm.  相似文献   

18.
A series of well-defined amphiphilic poly(styrene)-block-poly 3-(trimethoxysilyl) propyl methacrylate (PS-b-PMSMA) copolymers with controlled molecular weight and block length were prepared by the atom transfer free radical polymerization. The cadmium sulfide (CdS) nanoparticles were fabricated in the spherical micelles self-assembled from these prepared PS-b-PMSMA copolymers. Then, the CdS/PS-b-PMSMA films were obtained by spin coating the CdS/PS-b-PMSMA solution on silicon wafer. The experimental results showed the addition of Cu(II) could decrease the value of polydispersity index for the prepared copolymers. Nuclear magnetic resonance and Fourier transform infrared spectra showed the synthesis of PS-b-PMSMA copolymer. The average roughness and mean square roughness of the prepared CdS/PS-b-PMSMA films obtained from the atomic force microscopy analysis were 3.0–3.4 nm and 1.7–2.0 nm, respectively, indicating the excellent surface planarity. On the other hand, the ratio of block length between PS and PMSMA had a great influence on the micelle size. The larger ratio of PS to PMSMA block length resulted in the larger size of micelles and CdS nanoparticles that caused a red-shift of ultraviolet–visible and photoluminescence spectra. The red-shift of spectra was explained by the quantum confinement effect associated with the tiny size of the CdS nanoparticles.  相似文献   

19.
连铸保护渣的物化性质与其结构密切相关。而氟化物对调节连铸保护渣高温物化性能具有重要作用,因此研究氟对多元硅酸盐结构影响有助于深入了解氟的作用特性,进而为环保型连铸保护渣的开发奠定理论基础。论文通过拉曼光谱研究了氟对保护渣高温熔体、玻璃及晶体中硅酸盐微结构单元的影响。结果表明:随着CaF2含量的增加,硅酸盐微结构单元种类和相对数量发生变化,硅酸盐网络化程度降低,熔体粘度减小;在性能相近的无氟渣和高氟渣中,高氟渣晶体中硅酸盐微结构单元主要为单体结构硅酸盐,无氟渣主要为链状结构硅酸盐。论文研究结果对无氟保护渣的开发具有一定的指导意义。  相似文献   

20.
In this study, two amino acid copolymers containing anthracene incorporated either on the one end, poly(N-acryloyl-l-phenylalanine-co-methyl methacrylate)-1 or as pendant groups, poly-(N-acryloyl-l-phenylalanine-co-methyl methacrylate)-2 were prepared directly from N-acryloyl-l-phenylalanine (APhe) and methyl methacrylate (MMA) through atom transfer radical polymerization (ATRP) and microwave-assisted synthesis. In the first case, 9-(chloromethyl)anthracene was used as an ATRP-initiator to obtain a copolymer that contains amino acid sequences and anthracene end-capped units (0.03 molar fraction). Rapid synthesis of copolymer under microwave irradiation (250 W) in the presence of 1,1′-azobis(cyclohexanecarbonitrile) used as an initiator was followed of a functionalization of the formed copolymer with an anthracene derivative yielding copolyacrylate with pendant anthracene (0.02 molar fraction). The structure of the copolymers was verified by 1H NMR, UV-Vis and FTIR spectroscopy, gel permeation chromatography (GPC), and fluorescence spectroscopy. The fluorescence quenching process of anthracene which exists in copolymers by FeCl3, cobalt acetate, nitrobenzene, maleic anhydride, diethylaniline and nitromethane in DMF solutions shows that this involves an electron transfer between the excited state anthracene and the present transitional metal cations, more efficiently being FeCl3 for poly-(APhe-co-MMA)-1 and cobalt acetate for the latter copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号