首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
《Composite Interfaces》2013,20(7-9):671-686
Modification of wood fiber/flour (WF) surfaces can improve their compatibility with hydrophobic plastic matrices and reduce composite water uptake. WF was esterified with octanoyl chloride and palmitoyl chloride. Modified WF was analyzed by FT-IR. More extensive esterification occurred in highly polar dimethylformamide (DMF) than in much less polar CHCl3 or methyl tert-butyl ether (MTBE). DMF penetrates into the fiber far more than CHCl3 or MTBE, making more –OH groups available for esterification. Increasing the acid chloride chain length from C8 to C16 decreased the mole fraction of esterification. Longer chains cover surface –OH groups, retarding reactions with nearby hydroxyls after esterification. Longer chain acid chlorides also have lower reactivity and penetrate into the hydrophilic wood fiber more slowly. Modified wood flour surfaces were covered by a hydrophobic layer of ester groups (SEM). Modified wood flour surfaces and WF/HDPE composite fracture surfaces were studied by SEM. C8-modified wood flour (60 wt%)/HDPE composites exhibited far less water absorption after 24 h and 216 h immersions compared with unmodified WF (60 wt%)/HDPE composites. Water absorption continues over the 216 h period. Esterified WF/HDPE composites exhibited lower flexural strengths and moduli. In contrast to C8-esterification, the addition of maleated polypropylene (MAPP) to WF/HDPE composites improved composite mechanical performance and gave similar water absorption properties to C8-esterified WF composites.  相似文献   

2.
Maleic anhydride grafted polypropylene (PP-g-MA) was employed as the compatibilizer and carbon nanotubes (CNTs) or hydroxylated CNTs as reinforcements for polypropylene/wood flour composites. The results showed that when the PP-g-MA loading level was 10 wt%, the bending strength, tensile strength, Izod notched impact strength, and elongation at break of PP-wood composites were enhanced by 85% (66.3 MPa), 93% (33.7 MPa), 5.8% (2.01 kJ/m2), and 64% (23%), respectively, relative to the uncompatibilized composites. The introduction of pristine CNTs only improved slightly the overall mechanical properties of the compatibilized composites due to poor interfacial compatibility. Unlike CNTs, incorporating hydroxylated CNTs (CNT-OH) could significantly improve all of the mechanical properties; for instance, at 0.5 wt% CNT-OH loading, the flexural strength and tensile strength reached 68.5 MPa, and 40.4 MPa about 6.6% higher than that for the composites with the same CNT loading. Furthermore, CNT-OH also remarkably enhanced the storage modulus. Contact angle and morphology observations indicated that the increases in mechanical properties could be attributed to the improvements of interfacial interactions and adhesions of CNTs with the matrix and fillers.  相似文献   

3.
不同塑料基体木塑复合材料(WPC)的识别及主要组分的定量分析对于废弃WPC产品的分类回收、高效再利用,以及产品生产过程中的质量控制、产品销售和使用过程中规范市场秩序和维护消费者合法权益,具有重要意义。建立不同塑料基体WPC的主要组分的通用定量分析模型,有助于降低检测成本,扩大模型的适用范围。然而。目前国内外关于不同塑料基体的WPC定性识别研究,尚未与WPC主要组分的定量分析相联系,未能构建完整的技术体系。WPC主要组分定量分析研究尚局限在单一塑料基体WPC的定量分析模型。针对此种情况,分别以聚乙烯(PE)和聚丙烯(PP)为增强体,杉木为生物质填料,加入一定量的添加剂后,采用挤出成型法分别制备了20个不同杉木/PE配比和20个不同杉木/PP配比的WPC样品。采用溴化钾压片法获取了40个WPC样品的红外光谱,利用多变量统计软件对光谱数据先进行一阶导数处理,再进行变量标准化。利用主成分分析法(PCA)对杉木/PE和杉木/PP两种复合材料进行了分类,由于PP和PE化学结构的差异明显,两种复合材料在二维主成分空间中呈带状分布,每种WPC样品处于相对独立空间,分类正确率达100%。利用偏最小二乘法(PLS)建立了两种复合材料通用定量分析模型,木粉和塑料的校正模型的决定系数R2分别为0.984和0.985,校正标准偏差SEC分别为1.034%和1.206%;木粉和塑料的预测模型的R2均为0.956,交互验证标准偏差SECV分别为1.779%和1.792%;RPD值分别为4.83和4.85。为更客观准确地检验模型的预测能力,随机选取10个样品对所建通用定量分析模型进行外部验证。结果显示,模型预测准确性高,木粉含量的预测相对偏差在±8%以内,塑料含量的预测相对偏差在±7%以内。建立了一套PE基和PP基WPC快速准确的识别方法和通用定量分析模型,为红外光谱法应用于WPC生产、质检及回收再利用过程中的定性识别和定量分析奠定了技术基础。  相似文献   

4.
《Composite Interfaces》2013,20(7-9):841-850
Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T c and ΔH c increases. As a conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.  相似文献   

5.
The crystallization behavior of uncompatibilized and reactive compatibilized poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends was investigated. In both blends, PTT and PP crystallization rates were accelerated by the presence of each other, especially at low concentrations. When PP content in the uncompatibilized blends was increased to 50–60 wt%, PTT showed fractionated crystallization; a small PTT crystallization exotherm appeared at ~135°C besides the normal ~175°C exotherm. Above 70 wt% PP, PTT crystallization exotherms disappeared. In contrast, PP in the blends showed crystallization exotherms at 113–121°C for all compositions. When a maleic anhydride‐grafted PP (PP‐g‐MAH) was added as a reactive compatibilizer, the crystallization temperatures (T c ) of PTT and PP shifted significantly to lower temperatures. The shift of PTT's T c was larger than that of the PP, suggesting that addition of the PP‐g‐MAH had a larger effect on PTT's crystallization than on PP due to reaction between maleic anhydride and PTT.

The nonisothermal crystallization kinetics was analyzed by a modified Avrami equation. The results confirmed that PTT's and PP's crystallization was accelerated by the presence of each other and the effect varied with blend compositions. When the PP content increased from 0 to 60 wt%, PTT's Avrami exponent n decreased from 4.35 to 3.01; nucleation changed from a thermal to an athermal mode with three‐dimensional growths. In contrast, when the PTT content increased from 0 to 90 wt% in the blends, changes in PP's n values indicated that nucleation changed from a thermal (0–50 wt% PTT) to athermal (60–70 wt% PTT) mode, and then back to a thermal (80–90 wt% PTT) mode. When PP‐g‐MAH was added as a compatibilizer, the crystallization process shifted considerably to lower temperatures and it took a longer crystallization time to reach a given crystallinity compared to the uncompatibilized blends.  相似文献   

6.
The effects of Spartium junceum (SJ) flour content, treatment time on the thermal and thermomechanical properties of polypropylene/Spartium junceum flour (PP/SJ) composites were studied. In order to improve the interfacial adhesion between the PP matrix and the SJ flour, SJ flour was treated with NaOH (2 wt%) for 8, 24 and 48 h at ambient temperature, respectively, and treated by vinyltrimethoxysilane (VTMS) (5 wt%). The results of thermogravimetric analysis (TGA) of SJ flour shows that the treatment improves the thermal stability of SJ flour. DSC analysis measurements illustrates that the addition of SJ flour increase the degree of crystallinity Xc, which indicate that the SJ flour plays a significant role in heterogeneous nucleating of PP matrix. The chemical treatments significantly affect the storage modulus of composite, where E′ increases for composites with treated flour in comparison to the untreated ones.  相似文献   

7.
《Composite Interfaces》2013,20(7-9):731-750
Melt flow instabilities during extrusion of wood polymer composites (WPC) containing 30–60 wt% wood flour (WF) have been investigated. The research emphasized elucidation of the extrudate surface tearing mechanism and its relation to wall slip. This interesting phenomenon has been known in the WPC industry for years; however, it has not received much research interest. It was observed that increasing the wood flour loading up to 50 wt% aggravated the surface tearing; however, addition of 60 wt% wood flour completely eliminated the surface defect due to strong wall slip and plug flow. It was also found that addition of lubricants and increasing the shear rate significantly improved the surface appearance of the filled compounds. Molecular weight and molecular weight distribution of the polymer matrix influence the melt flow properties of the composites. The significance of the entrance pressure measurement and its usefulness for quantitative assessment of filler–matrix interactions in composite materials is also demonstrated in this paper.  相似文献   

8.
Poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends were prepared by melt blending. The rheology, morphology, melting, and mechanical properties of PTT/PP blends were investigated with and without the addition of polypropylene‐graft‐maleic anhydride (PP‐g‐MAH). The melt viscosity results showed that the fluid behavior of PTT/PP blends exhibited great disparity to that of PTT but similar to that of PP; the dispersed flexible PP phase in the blends served as a “ball bearing effect” under shear stress, which made the fluid resistance markedly reduced; by contrast, the relatively rigid PTT dispersed phase made only a small contribution to the viscosity. With 5 wt.% PP‐g‐MAH addition during melt processing, both the shear viscosity and the non‐Newtonian index of 70/30 PTT/PP blend were increased over that of the corresponding uncompatibilized one, whereas the shear viscosity of the 30/70 PTT/PP melt decreased slightly indicating that a considerable amount of PP‐g‐MAH did not act as compatibilizer but probably served as plasticizer.

With the increasing of the other component, the melting temperature of the PTT phase showed a slight decrease while the melting temperature of the PP phase showed a slight increase. 5 wt.% PP‐g‐MAH addition had little influence on the melting temperatures of the two components. When PP≤20 wt.%, the cold crystallization temperature of the PTT phase (Tcc (PTT‐phase)) showed little change with the composition; however, it shifted to higher temperature when PP≥30 wt.%. The variations of the Tcc (PTT‐phase), with and without PP‐g‐MAH, suggested that, when PTT was a minor component, the excess PP‐g‐MAH which did not act as compatibilizer might serve as a plasticizer that made the PTT's cold crystallization process to be easier. The SEM results indicated that, for the uncompatibilized blends, the interfaces from particles pulling‐out are clear and smooth, while, for compatibilized blends, the reactive products are at the interfaces. The mechanical properties suggested that PP‐g‐MAH did not result in significant improvement of the toughness of the blend, but the tensile strength increased markedly.  相似文献   

9.
Crystal morphology of thermoplastics is known to be strongly influenced by the presence of solid substrates like fibers or fillers. For wood, this interphase development is governed by the chemical composition of the thermoplastic and substrate. The crystallization of PP/MAPP blends was observed using polarized light microscopy and quantified using DSC and DMA. Techniques are presented to assess degree of crystallinity and temperatures associated with the onset (T o) and maximum rate (T c) of crystallization using DMA. Strain history of the specimen during crystallization was evaluated and does not significantly influence either T o or T c. Crystallization temperatures of PP as assessed using DSC or DMA increase with the addition of MAPP or the presence of wood. Values for T c are higher when measured by DMA than DSC. This difference appears to be related more to the relative interfacial dominance in the specimens, rather than to an inherent difference between techniques.  相似文献   

10.
The preparation of natural rubber/wood flour (NR/WF) composites and the influence of WF content, modification, and particle size on the vulcanizing behavior, mechanical properties, and water absorption of NR/WF composites are described. Results show that the addition of WF into NR delayed the scorching time and vulcanizing time of NR. The appropriate WF contents can improve the mechanical properties of NR. However, the overloading of WF destroys the mechanical properties of NR. The addition of WF increased the water absorption of NR. The silicone couple agents that were used to modify the WF had little effect on the water absorption of NR/WF composites. Decreasing the WF particle size enhanced the water absorption of NR/WF composites because the water-absorbing surface area increased with decreasing WF particle size. The water absorption of sisal-fiber-filled NR-based composites was larger than that of the WF-filled NR-based composites. A useful equation, w=ktn , was inferred from the water absorption results to calculate the water absorption (w) of the NR/WF composites as a function of time (t), where k was a constant concerning the compounds’ character that was primarily determined by the WF's character and n was the power of time that was related to the NR's inherent character, such as cross-linking density, and primarily determined the water absorption rate.  相似文献   

11.
《Composite Interfaces》2013,20(7-9):687-709
The combined effects of alkali and ultrasound treatment of wood flour on the mechanical properties of polypropylene-based wood/plastic composites (WPCs) were examined. FT-IR measurements confirmed that the alkali treatment removed both hemicellulose and lignin from the wood, and there was an increase in the number of hydroxyl groups on the cellulose surface. This process was promoted by ultrasound treatment. Mechanical testing of injection-molded WPC samples revealed that alkali treatment improved both composite strength and modulus when polypropylene grafted with maleic acid was used as a coupling agent. The strength increase is due to improved adhesion between the fiber and matrix, while improved modulus is due to the removal of lignin and hemicellulose that are not as stiff as cellulose. Polarized optical microscopy showed the presence of well-defined polymer crystals on the surface of the modified wood, and this is also responsible for the improved mechanical properties. It is conclusively demonstrated that the combination of chemical treatment of wood and ultrasound assistance is more effective in improving the mechanical properties of the composites than the use of chemical treatment alone.  相似文献   

12.
Maleic acid-alt-styrene (MAaS) copolymer with number-average molecular weight [Mbar] n = 2500 was used as a compatibilizer in blends of poly(ethylene oxide) (PEO) and poly(styrene) (PS). PEO with weight-average molecular weight [Mbar] w = 105 (PEO100) and two PS samples with [Mbar] w = 9 × 104 and 4 × 105, respectively (PS90 and PS400, respectively) were used. A depression of the melting temperature T m of PEO in blends containing MAaS relative to pure PEO and PEO/PS blends was observed. The melting enthalpy ΔH m for the PEO/PS blends containing MAaS was lower than those of pure PEO and PEO/PS blends without compatibilizer. The crystallization kinetics of PEO and the blends were studied by differential scanning calorimetry (DSC) at different crystallization temperatures T c. Flory-Huggins interaction parameters χ12 for the blends were estimated. Their values are in good agreement with those obtained for similar systems and suggest that the free energy of mixing ΔG mix should be negative. Polarized optical microscopy shows differences in the macroscopic homogeneity of the blends containing compatibilizer that could be attributed to a compatibilization process.  相似文献   

13.
红外光谱法测定杉木/聚丙烯复合材料中木粉和塑料含量   总被引:2,自引:0,他引:2  
木塑复合材料(wood plastic composites, WPCs)中木材和塑料的配比影响其性能和价格,传统的热化学方法尚不能快速准确地测定WPCs中木塑配比。为探究红外光谱法定量分析WPCs中木粉和塑料的可行性,以杉木、聚丙烯(PP)以及各种添加剂为原料,经过木粉改性、混料和挤出造粒制备出13种不同杉木含量(9.8%~61.5%)的WPCs。采用KBr压片法对制得的样品进行红外光谱分析,通过对比WPCs、杉木、PP以及其他添加剂的红外谱图,确定杉木特征吸收峰为1 059,1 033和1 740 cm-1,1 377,2 839和841 cm-1表征PP特征峰。建立木粉含量、PP含量和二者特征吸收峰峰高比之间的相关关系,结果表明,木粉含量与I1 059/I1 377I1 033/I1 377之间均存在极强的线性相关,R2分别为0.992和0.993,PP含量与I1 377/I1 740I2 839/I1 740之间存在高度线性相关,R2分别为0.985和0.981,形成了杉木/PP复合材料中木粉和PP含量的红外光谱定量分析方法,木粉含量预测方程依次为y=53.297x-9.107和y=55.922x-10.238,PP含量预测方程依次为y=6.828 5x+5.403 6和y=8.719 7x+3.295 8。方法精密性和准确性检验表明,方法可重复性强、准确度高,木粉与塑料含量预测平均相对误差约为5%,与传统热化学方法相比,预测精度有较大提高,更重要的是红外光谱法操作更为简便。该研究为杉木/PP复合材料中木粉及塑料含量的测定提供了一种简便、快速、准确的方法。  相似文献   

14.
In this paper, interfacial structure induced development of crystallization behavior of polypropylene (PP)/polyolefin elastomer (POE)/barium sulfate (BaSO4) ternary composites was studied by DSC. Two kinds of PP (copolymer and homopolymer) were used. The compatibility between PP and POE had a distinct influence on nucleation and crystal growth of PP in PP/POE binary composites. The crystallization rate of PP homopolymer increased because of the heterogeneous nucleation by POE, while the crystallinity of PP homopolymer decreased because of an inhibition effect of the hexane side chains in POE. BaSO4 particles acted as heterogeneous nucleating agents of PP in ternary composites. The dispersion of BaSO4, controlled by interfacial design, had a distinct influence on the nucleation activity of BaSO4 in ternary composites. Interfacial structure had the same effect on nucleation activity of BaSO4 particles and crystallization rate of PP matrix in PP copolymer ternary composites as those in PP homopolymer ternary composites.  相似文献   

15.
The thermal behaviors of glycidyl methacrylate (GMA)-grafted polypropylene (PP) (PP-g-GMA) with two different grafting degrees, namely, GPP1 and GPP2, were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), and thermogravimetrical analysis (TGA). DSC results suggested that the GMA grafted PP exhibited higher crystallization temperature Tc, higher melting temperature Tm, and higher crystallinity compared with the neat PP. The isothermal crystallization kinetics was analyzed with the Avrami equation and the total crystallization activation energy was calculated. It was concluded that the crystallization processes of PP and the grafted PP were controlled by nucleation and the values of the crystallization activation energy of PP and the grafted PP were almost identical. POM results suggested that the GMA grafted PP exhibited smaller spherulites size compared with the neat PP. WAXD patterns indicated that the neat PP encouraged the formation of γ phase, compared with the grafted PP, during the crystallization process. DMA results showed that melt grafting did not induce a clear effect on the γ-transition and β-transition of the amorphous phase but resulted in a decrease in mobility of the PP chains in the crystals. TGA curves suggested that the melt grafting slightly improved the thermal stability of PP.  相似文献   

16.
Organic montmorillonite (MMT) reinforced poly(trimethylene terephthalate) (PTT)/ polypropylene (PP) nanocomposites were prepared by melt blending. The effects of MMT on the nonisothermal crystallization of the matrix polymers were investigated using differential scanning colorimetry (DSC) and analyzed by the Avrami equation. The DSC results indicated that the effects of MMT on the crystallization processes of the two polymers exhibited great disparity. The PTT's crystallization was accelerated significantly by MMT no matter whether PTT was the continuous phase or not, but the thermal nucleation mode and three-dimensional growth mechanism remained unchanged. However, in the presence of MMT, the PP's crystallization was slightly retarded with PP as the dispersed phase, and was influenced little with PTT as the dispersed phase. When the MMT content was increased from 2_wt% to 7_wt%, the crystallization of the PTT phase was slightly accelerated, whereas the crystallization of the PP phase was severely retarded, especially at lower temperatures. Moreover, the nucleation mechanism for the PP's crystallization changed from a thermal mode to an athermal one. In the polypropylene-graft-maleic anhydride (PP-g-MAH) compatibilized PTT/PP blends, with the addition of 2_wt% MMT during melt blending, the T c (PTT) shifted 7.8°C to lower temperature and had a broadened exotherm, whereas the T c (PP) shifted 17.1°C to higher temperature, with a narrowed exotherm. TEM analysis confirmed that part of the PP-g-MAH was combined with MMT during blending.  相似文献   

17.
Thermal properties of polypropylene with poly(cis-butadiene) rubber (iPP/PcBR) blends have been measured by differential scanning calorimetry (DSC), and the melting point Tm, crystallization temperature Tc, enthalpy Δ H (melting enthalpies and crystalline enthalpies), and equilibrium melting point T0 m have been measured and calculated. The variation of Tm, Tc, Δ H and T0 m with composition in the blends was discussed, showing that an interaction between phases is present in iPP/PcBR blends. The degree of supercooling characterizing the interaction between two phases in the blends and the crystallizability of the blends which bears a relationship to the composition of the blends was discussed. The kinetics of isothermal crystallization of the crystalline phase in iPP/PcBR blends was studied in terms of the Avrami equation, and the Avrami exponent n and velocity constant K were obtained. The Avrami exponent n is between 3 and 2, meaning that iPP has a thermal nucleation with two dimensional growths. The variation of the Avrami exponent n, velocity constant K, and crystallization rate G bear a relation to the composition of the blends, n increases with increasing content ofPcBR. K also increased with increasing content of PcBR. All of the K for the blends are greater than for pure iPP. The crystallization rate G (t1/2) depends on the compositions in the blends; all G of the blends are greater than for iPP.  相似文献   

18.
Because of the surfaces of wood-plastic composite (WPC) materials are enriched in polymers of low surface energy, they exhibit low adhesion properties. UV/ozone is proposed as surface treatment for increasing the surface energy and adhesion of WPC materials made with different polymers (polyethylene, polypropylene and polyvinyl chloride). UV lamp-WPC surface distance and time of UV exposure were varied for optimizing UV/ozone treatment of WPC, and UV dose used ranged between 2.02 × 10?14 and 5.05 × 10?12 J·s/m2. UV/ozone treatment created new carbon-oxygen polar groups in WPC surfaces and increased their surface energy, mainly their polar component. Furthermore, ablation of the outermost WPC surface was produced, more noticeably by reducing the distance between WPC surface and UV lamp and by increasing the duration of the treatment. Noticeable increase in 180° peel adhesion was obtained in the joints made with UV/ozone treated WPC at 10–30 mm distance during 1–5 min (i.e., UV dose between 5.61 × 10?14 and 2.53 × 10?12 J·s/m2). Although 180° peel strength of joints made with acrylic adhesive tape and UV/ozone treated WPC for 10 min and 10 mm distance (UV dose: 5.05 × 10?12 J·s/m2) was not increased because of dominant effect of ablation over creation of polar groups, the cross-hatch adhesion to different coatings was highly improved, irrespective of the polymer used and the wood content of WPC; however, the surface modifications and adhesion of UV/ozone treated WPC were more marked when its wood content was higher and by using UV dose between 0.10 × 10?12 and 2.53 × 10?12 J·s/m2.  相似文献   

19.
The mechanical properties, morphology, and crystallization behavior of polycarbonate (PC)/polypropylene (PP) blends, with and without compatibilizer, were studied by tensile and impact tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The tensile and impact strengths of PC/PP blends decreased with increasing the PP content due to poor compatibility between the two phases. But the addition of compatibilizer improved the mechanical properties of the PC/PP blends, and the maximum value of the mechanical properties, such as tensile and impact strengths of PC/PP (80/20 wt%) blends, were obtained when the compatibilizer was used at the amount of 4 phr. The SEM indicated that the compatibility and interfacial adhesion between PC and PP phases were enhanced. DSC results that showed the crystallization and melting peak temperatures of PP increased with the increase of the PP content, which indicated that the amorphous PC affected the crystallization behavior. However, both the PC and compatibilizer had little effect on the crystallinity of PP in PC/PP blends based on both the DSC and XRD patterns.  相似文献   

20.
《Composite Interfaces》2013,20(5):309-329
Chemically functionalized maleic anhydride (MAH)-grafted polypropylene matrix has been used (in place of polypropylene as matrix with compatibilizer) to process banana fiber/chemically functionalized polypropylene (BF/CFPP) composites, without using any compatibilizer and without any fiber modification by Palsule process. Fiber/matrix interfacial adhesion generated, in-situ, due to interactions between BF and the MAH of the CFPP matrix has been established by Fourier transform infrared spectroscopy and scanning electron microscopy. Mechanical properties of the BF/CFPP composites developed by Palsule process with in-situ fiber/matrix interfacial adhesion in this study have been found to be higher than those of the matrix and it increases with increasing amounts of fibers in composites, and are better than properties of literature reported BF/polypropylene composites processed with compatibilizers. Measured modulus of BF/CFPP composites compares well with values predicted by rule of mixtures, Hrisch model, Halpin-Tsai equations and its modified Nielsen version, and with Palsule equation. The feasibility of developing natural fiber/MAH grafted polyolefin composites by Palsule process without using any compatibilizer and without any fiber treatment is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号