首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports that the multi-walled carbon nanotubes(MWCNT)/nylon-6 (PA6) nanocomposites with different MWCNT loadingshave been prepared by a simple melt-compounding method. Theelectrical, dielectric, and surface wetting properties of theCNT/PA6 composites have been studied. The temperature dependence ofthe conductivity of the CNT/PA6 composite with 10.0 wt{\%} CNTloading ($\sigma _{\rm RT} \sim 10^{-4}$ S/cm) are measured, andafterwards a charge-energy-limited tunnelling model (ln $\sigma (T)\sim T^{-1/2})$ is found. With increasing CNT weight percentage from0.0 to 10.0 wt%, the dielectric constant of the CNT/PA6composites enhances and the dielectric loss tangent increases twoorders of magnitude. In addition, water contact angles of theCNT/PA6 composites increase and the composites with CNT loadinglarger than 2.0 wt%even become hydrophobic. The obtainedresults indicate that the electrical and surface properties of thecomposites have been significantly enhanced by the embedded carbonnanotubes.  相似文献   

2.
The electrical, crystallization and thermal expansion behaviors of polyamide 610 (PA610)/multi-walled carbon nanotube (CNT) nanocomposites prepared by melt mixing were investigated. Electron microscopy (Scanning Electron Microscopy and Transmission Electron Microscopy) revealed that a good dispersion of CNT and CNT network was obtained in the PA610 matrix. Addition of CNT to PA610 matrix led to polymer nanocomposites exhibiting higher electrical conductivity and lower thermal expansion. The network of CNT in the PA610 matrix, which can be tuned by the loading of CNT and the melt isothermal treatment, was found to play an important role in reducing thermal expansion and achieving higher conductivity. Furthermore, it was shown that significant reduction in thermal expansion in PA610/CNT nanocomposites was due to both thermally insensitive CNT and formation of CNT network.  相似文献   

3.
The effects of carbon nanotubes (CNTs) on the morphology of uncompatibilized and maleic anhydride-grafted polypropylene (MAPP)-compatibilized polyamide 6 (PA6)/polypropylene (PP) (70/30 w/w) blends prepared using a torque rheometer were investigated. TEM observations showed that the CNTs were selectively located in the major PA6 phase and at the interface. Such localization of nanofillers in the literature usually leads to a refinement in a sea-island morphology. Unexpectedly, our results show that increasing amounts of CNTs in the samples prepared using a torque rheometer led to a transformation from typical sea-island morphology to co-continuous morphology for uncompatibilized PA6/PP blends and to partial fibrillization of the PP domains for MAPP-compatibilized PA6/PP blends. These unusual morphological changes are attributed to a retarded morphology evolution process caused by the CNTs. According to rheological measurements and theoretical analysis, this was achieved through the role of CNTs in enhancing the viscoelasticity of the PA6 phase and promoting interfacial slip. The electrical resistivites, crystallization, and melting behavior of all samples were also studied.  相似文献   

4.
蔡丹  刘列  巨金川  王海涛  赵雪龙  王潇 《物理学报》2016,65(4):45202-045202
采用电泳沉积法、碳纳米管纸和化学气相沉积直接生长法制备了三种碳纳米管阴极. 从强流发射性能、阴极等离子体膨胀、阴极起动、发射均匀性、工作稳定性以及脉冲放气特性等多个方面, 对比研究了碳纳米管阴极和化纤天鹅绒阴极的强流发射特性, 研究表明碳纳米管阵列和碳纳米管纸阴极发射性能明显优于普通化纤天鹅绒, 碳纳米管阴极发射性能与碳纳米管取向无关, 管壁的缺陷发射对无序碳纳米管阴极强流发射具有重要贡献. 碳纳米管阴极的起动场强约为普通化纤天鹅绒的2/3, 电场上升率相同时碳纳米管阴极比化纤天鹅绒阴极起动时间短12–17 ns. 碳纳米管阴极发射均匀性优于化纤天鹅绒, 尤其是碳纳米管阵列, 整个阴极表面等离子体光斑致密且均匀. 在二极管本底气压为6×10-3 Pa时, 碳纳米管纸阴极对应的二极管峰值气压不到0.3 Pa, 约为普通化纤天鹅绒阴极的1/5, 碳纳米管阵列阴极放气量在三种阴极中最少, 仅为0.042 Pa. 结果表明, 碳纳米管阴极在强流电子束源和相关高功率微波器件领域具有潜在的应用价值.  相似文献   

5.
《Current Applied Physics》2014,14(3):337-339
We have investigated the electric field effect on horseshoe-shape carbon nanotubes (CNTs) resulting from hydrogen adsorption on the single-wall armchair (n,n)CNTs with 6 ≤ n ≤ 16 by using the density functional theory calculations. The horseshoe-shape CNT is completely unzipped into a graphene nanoribbon upon applying a critical electric field, which decreases with increasing CNT diameter, thus enabling one to select a nanoribbon width. A simple model based on the tensile force exerted on the tube walls by the applied electric field was introduced to understand the CNT-diameter dependence of the critical field.  相似文献   

6.
In continuation of our research on carbon nanotube/P(VDF-TrFE) nano-composites [1], total x-ray fluorescence (TXRF) is engaged in a novel characterization of these materials regarding their compositions, purities, and structural analysis. Samples such as single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), P(VDF-TrFE) copolymer, SWCNT/P(VDF-TrFE), and MWCNT/P(VDF-TrFE) were analyzed by TXRF. The synthetic quartz used as a substrate was analyzed as reference material for the TXRF measurements. The ethanol and the dimethylformamide (DMF) used as solvents for carbon nanotubes and copolymers respectively were also analyzed by TXRF to determine whether they have an influence or not on the TXRF of the previous material. The preliminary results showed that single-walled and multi-walled carbon nanotubes prepared by the arc-discharge method contain catalytic particles such as Fe, Co, and Ni used to obtain SWCNT while there were no metal or impurities in MWCNT. The TXRF spectrum of CNT/P(VDFTrFE) showed the same results as we found previously with background due to the P(VDF-TrFE) copolymer scattered signal. __________ Published in Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 5, pp. 700–702, September–October, 2005.  相似文献   

7.
This communication reports on a new method for the collection of nanoparticles using carbon nanotubes (CNT) as collecting surfaces, by which the problem of agglomeration of nanoparticles can be circumvented. CNT (10–50 nm in diameter, 1–10 μm in length) were grown by thermal CVD at 923 K in a 7 v/v% C2H2 in N2 mixture on electroless nickel-plated copper transmission electron microscopy (TEM) grids and Monel coupons. These samples were then placed downstream of an arc plasma reactor to collect individual copper nanoparticles (5–30 nm in diameter). It was observed that the Cu nanoparticles preferentially adhere onto CNT and that the macro-particles (diameter >1 μm), a usual co-product obtained with metal nanoparticles in the arc plasma synthesis, are not collected. Cu–Ni nanoparticles, a catalyst for CNT growth, were deposited on CNT to grow multibranched CNT. CNT-embedded thin films were produced by re-melting the deposited nanoparticles.  相似文献   

8.
Ultraviolet (UV) degradation is one of the most important challenges of waterborne coatings in exterior applications. One of the ways to address this issue is addition of radical scavenging species within the polymer matrix. Herein, hybrids of graphene (G) and multiwall carbon nanotubes (CNTs) in different ratios are used as radical scavenging species. Evaluated by electron paramagnetic resonance spectroscopy, it is found that the hybrid made of G/CNTs in ratio of 10:1 efficiently captures and quenches the free radicals. The waterborne polymer composites containing 1 wt% of hybrid G/CNT are synthesized by in situ miniemulsion free radical polymerization using a water soluble initiator. However, due to excellent efficiency to capture free radicals, the polymerization performed using water soluble initiators in the presence of 10:1 G/CNT filler is hindered. This is resolved by physical separation of the free radicals and the scavenging materials within different phases by use of oil soluble initiator. The resulting polymer composites, beside having excellent mechanical resistance, present exceptional stability under accelerated aging conditions during 400 h, suppressing almost completely the UV photodegradation. This is attributed to the efficient radical scavenging of the G/CNTs hybrid filler distributed within polymer matrix, resulting in high‐performance UV protective waterborne composite coatings.  相似文献   

9.
关于碳纳米管反常反斯托克斯拉曼(AASR)光谱现象的研究   总被引:1,自引:1,他引:0  
在碳纳米管中观察到了反常反斯托克斯拉曼(AASR)光谱现象,并发现AASR现象与碳纳米管的管层数和碳材料的片层样结构无关,因而揣测它可能只与碳纳米管的管状结构有联系。  相似文献   

10.
Although progress in the use carbon nanotubes in medicine has been most encouraging for therapeutic and diagnostic applications, any translational success must involve overcoming the toxicological and surface functionalization challenges inherent in the use of such nanotubes. Ideally, a carbon‐nanotube‐based drug delivery system would exhibit low toxicity, sustained drug release, and persist in circulation without aggregation. Here, carbon nanotubes (CNTs) coated with a biocompatible block‐co‐polymer composed of poly(lactide)‐poly(ethylene glycol) (PLA‐PEG) are reported to reduce short‐term and long‐term toxicity, sustain drug release of paclitaxel (PTX), and prevent aggregation. The copolymer coating on the surface of CNTs significantly reduces in vitro toxicity. Moreover, the coating reduces the in vitro inflammatory response. Compared to non‐coated CNTs, in vivo studies show no long‐term inflammatory response with CNT coated with PLA‐PEG (CLP) and the surface coating significantly decreases acute toxicity by doubling the maximum tolerated dose in mice. In vivo biodistribution and histology studies suggest a lower degree of aggregation in tissues.  相似文献   

11.
拾取指定长度的半导体性碳纳米管对大规模制造碳纳米管场效应管具有重要意义.本文提出了一种利用原子力显微镜探针和钨针对碳纳米管进行可控长度拾取的方法并进行了碳纳米管导电性分析.在扫描电子显微镜下搭建微纳操作系统,针对切割操作过程中原子力显微镜探针、钨针和碳纳米管的接触情况进行了力学建模和拾取长度误差分析.建立了单根金属性碳纳米管、单根半导体性碳纳米管及碳纳米管束与钨针接触的电路模型,推导了接入不同性质碳纳米管后电路的电流电压特性方程.使用原子力显微镜探针对碳纳米管的空间位姿进行调整,控制钨针对碳纳米管上目标位置进行通电切割,同时获取切割电路中的电流电压数据.实验结果表明,本文提出的方法能够有效控制所拾取碳纳米管的长度,增加碳纳米管与原子力显微镜探针的水平接触长度能够减小碳纳米管形变导致的拾取长度误差,建立的电流电压特性方程能够用于分析碳纳米管的导电性.  相似文献   

12.
The relationships among the nominal thickness of Co catalyst, the structure of the catalyst particles, and the structure of carbon nanotubes (CNTs) growing from the catalyst during chemical vapor deposition were investigated. Various morphologies of CNTs such as individuals, random networks parallel to the surface of the substrate (‘grasses’), and vertically aligned forests of single- and multi-walled carbon nanotubes were grown by only varying the nominal thickness of catalyst under the same reaction condition. These different morphologies at the same growth time were due to the different areal density rather than to the length of CNTs. With increasing nominal thickness of catalyst, the catalyst particles changed in diameter while their areal density remained relatively almost constant. The change in diameter possibly affected the number ratio of active catalyst particles to the whole particles, which in turn affected the areal density of CNTs and yielded the various morphologies. Longer growth time increased the CNT length, which caused further change in CNT morphologies from individuals to grasses and grasses to forests.  相似文献   

13.
武小芳  谢树果  何云涛  李丽  李小路 《物理学报》2016,65(9):97801-097801
将经典金属自由电子气模型应用于金属型碳纳米管, 基于光学天线有效波长理论, 得出了金属型碳纳米管光学天线响应的有效波长与碳纳米管介电特性之间的普适关系. 在对碳纳米管介电特性进行第一性原理计算的基础上, 以金属型4 Å碳纳米管为例, 进一步研究了金属型碳纳米管光学天线响应的有效波长与入射波长之间的关系, 以及金属型碳纳米管光学偶极子天线的谐振特性. 通过将已有传统金属光学天线和碳纳米管天线有效波长的研究结果进行对比, 验证了本文理论的正确性. 结果表明, 碳纳米管光学天线响应的有效波长与入射波长呈近似线性关系, 与传统金属材料构成的同直径光学天线相比, 碳纳米管天线显示出了更强的波长压缩能力, 并且在可见光到红外波段内易于发生谐振. 该研究方法可为碳纳米管光学天线研究提供新的思路.  相似文献   

14.
用分子动力学方法模拟一种特殊结构Si20 (表面异构的硅十二面体结构)填充到不同管径的扶手椅型碳纳米管中组成复合结构的热稳定性。通过能量分析和定量统计缺陷多边形数量等方法来研究这种结构在碳纳米管中的稳定性和结构演变情况。研究发现Si20的热稳定性和碳纳米管的直径关系密切;其在CNT(15, 15)中的热稳定性最好,当管径逐渐增加时,其热稳定性呈下降趋势;直至管径增加到CNT(21, 21),碳纳米管对Si20的空间限制作用变得很小,以至于不足以维持Si20的稳定。此外,Si原子因热振动替换碳纳米管中C原子而形成十二边形缺陷,这对碳纳米管的热稳定性有着明显的降低作用。  相似文献   

15.
Si nanoparticle (Si‐NP) composite anode with high rate and long cycle life is an attractive anode material for lithium‐ion battery (LIB) in hybrid electric vehicle (HEV)/pure electric vehicle (PEV). In this work, a carbon nanotube (CNT)/reduced graphene oxide (rGO)/Si nanoparticle composite with alternated structure as Li‐ion battery anode is prepared. In this structure, rGO completely wraps the entire Si/CNT networks by different layers and CNT networks provide fast electron transport pathways with reduced solid‐state diffusion, so that the stable solid‐electrolyte interphase layer can form on the whole surface of the matrix instead of on single Si nanoparticle, which ensure the high cycle stability to achieve the excellent cycle performance. As a result, the CNT/rGO/Si‐NP anode exhibits high performances with long cycle life (≈455 mAh g?1 at 15 A g?1 after 2000 cycles), high specific charge capacity (≈2250 mAh g?1 at 0.2 A g?1, ≈650 mAh g?1 at 15 A g?1), and fast charge/discharge rates (up to 16 A g?1). This nanostructure anode with facile and low‐cost synthesis method, as well as excellent electrochemical performances, makes it attractive for the long life cycles at high rate of the next generation LIB applications in HEV/PEV.  相似文献   

16.
采用钛氰铁高温催化热解方法可制备发射性能优异的碳纳米管薄膜阴极。当脉冲电场峰值达到30 MV/m时,发射电流密度达kA/cm2以上,对应相对论电子束流强度高达15 kA,等离子体发射机制参与电子束发射过程。以重复频率10 Hz发射模式时,其发射阈值低,束压、束流波形跟随性好,发射稳定性优于石墨阴极。发射发次达到1000后,碳纳米管形态依然完整,界面无脱附。  相似文献   

17.
Molecular dynamics simulations have been performed to investigate the structures of Lennard–Jones(LJ) nanowires(NWs) encapsulated in carbon nanotubes(CNTs). We find that the structures of NWs in a small CNT only adopt multi-shell motifs, while the structures of NWs in a larger CNT tend to adopt various motifs. Among these structures, three of them have not been reported previously. The phase boundaries among these structures are obtained regarding filling fractions, as well as the interaction between NWs and CNTs.  相似文献   

18.
The electrical properties of anisotropic carbon nanotubes (CNTs)/polycarbonate (PC)/ polyethylene (PE) (ACPC) strongly depended on the CNTs’ concentration. When the ACPC was subjected to isothermal treatment (IT), the resistivity variation in both the parallel and perpendicular directions had the characteristics of a relaxation as a function of temperature. During the IT the orientation of the PC microfibrils was gradually damaged and CNTs/PC microfibrils were deformed and changed to short fibers, leading to a transition from anisotropy to isotropy. The velocity of the conductive network reconstruction could be characterized by the relaxation time, and the resistivity of the composite during the IT process can be instantaneously predicted based on the relaxation equation. The relaxation time and the equilibrium resistivity of the composite during IT were determined by the IT temperature and CNT content.  相似文献   

19.
张薇  陈鲁倬  张健敏  黄志高 《中国物理 B》2017,26(4):48801-048801
In recent years,actuators based on carbon nanotube(CNT) or graphene demonstrate great potential applications in the fields of artificial muscles,smart switches,robotics,and so on.The electrothermal and photothermal bending actuators based on CNT/graphene and polymer composites show large bending actuations,which are superior to traditional thermaldriven actuators.However,the influence of material parameters(thickness,temperature change,etc.) on the actuation performance needs to be further studied,because it is a critical point to the design and fabrication of high-performance actuators.In this work,finite element analysis(EEA) is employed to simulate the actuation performance of CNT/polymer actuator,which has a bilayer structure.The main focus of this work is to design and to optimize material parameters by using computational method.FEA simulation results show that each layer thickness of actuator has an important influence on the actuation deformation.A maximum curvature of 2.7 cm~(-1) is obtained by simulation,which is much larger than most of the actuator curvature reported in previous experiments.What is more,larger temperature change and larger difference of coefficient of thermal expansion(CTE) between two layers will result in larger bending actuation.This study is expected to provide valuable theoretical reference for the design and realization of CNT-based thermal actuator with ultra-large actuation performance.  相似文献   

20.
Purification of carbon nanotubes grown by thermal CVD   总被引:1,自引:0,他引:1  
We show the results of a set of purifications on carbon nanotubes (CNT) by acid and basic treatments. CNTs were obtained by thermal decomposition of camphor at 850 °C in a CVD growth system, by means of a growth process catalyzed by iron clusters originating from the addition of ferrocene in the precursors mixture. The purification procedures involved HNO3, H2SO4, HSO3Cl and NaOH for different process temperatures.As-grown CNTs showed a consistent presence of metal catalyst (about 6 wt%), evidenced by TGA. The purification treatments led to a certain amount of opening of the CNT tips, with a consequent loss of metal catalyst encapsulated in tips. This is also confirmed by BET analysis, which showed an increase of the surface area density of CNT after the purification.FT-IR and XPS revealed the presence of carboxylic groups on the CNT surface chemically modified by the harsh environment of the purification process.Among the various treatments that have been tested, the 1:3 solution of nitric and sulphuric acid was the most effective in modifying the CNT surface and inducing the formation of functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号