首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In this work we have used acetoxypropylcellulose (APC) to produce free standing solid films (∼60 μm) that were used for assembling electro-optical devices. Thin films were obtained from concentrated lyotropic solutions of cellulose derivatives. Induced by the cast and shearing preparation conditions wrinkles and band textures can be observed in their free-surface plane. In order to eliminate and control these textures we used a process similar to that introducted in literature [1] which consists of storing the films in the same solvent-vapour atmosphere as the solution system. Lyotropic APC liquid crystalline solutions in dymethylacetamide (DMA) with crosslinker were prepared, thin films were obtained by using a shear/casting technique and stored in the solvent-vapour atmosphere until a planar structure was achieved. The dried crosslinked films were analyzed by optical polarised microscopy (POM) and scanning electron microscopy (SEM). The films with different topographies were used to produce optical cells composed by the cellulose derivative film covered on both free surfaces by a layer of the nematic liquid crystal E7 and placed between two transparent conducting substrates. The electro-optical properties of these cells were obtained.  相似文献   

2.
Ultrasound (US)-triggered nicotine release system in a cellulose hydrogel drug carrier was developed with three different cellulose concentrations of 0.45 wt%, 0.9 wt%, and 1.8 wt%. The nicotine-loaded cellulose hydrogels were fabricated by the phase inversion method when the nicotine and cellulose mixture in the 6 wt% LiCl/N, N-dimethylacetamide solvent was exposed to water vapor at room temperature. Nicotine was used as the medicine due to its revealed therapeutic potential for neurodegenerative diseases like Alzheimer's and Parkinson's diseases. The behavior of US-triggered nicotine release from nicotine-cellulose hydrogel was studied at 43 kHz US frequency at the changing US output powers of 0 W, 5 W, 10 W, 20 W, 30 W, and 40 W. The significant US-triggered nicotine release enhancement was noted for the hydrogels made with 0.9 wt% and 1.8 wt% cellulose loading. The matrix made with 0.9 wt% cellulose was exhibited the highest nicotine release at the 40 W US power, and differences in nicotine release at different US powers were noticeable than at 0.45 wt% and 1.8 wt% cellulose loadings. For the three cellulose hydrogel systems, the storage modulus (G′) values at the 0.01 wt% strain rate were dropped from their initial values due to the US irradiation. This reduction was proportionately decreased when the US power was increased. The deconvolution of FTIR spectra of nicotine-loaded cellulose films before and after US exposure was suggested breakage of cellulose-nicotine and cellulose-water in the matrix; thus, the stimulated nicotine release from the cellulose matrix was promoted by the US irradiation.  相似文献   

3.
Molecular modeling of the cholesteric liquid crystal polyester poly[oxy(1,2 - dodecane)oxycarbonyl-1,4-phenyleneoxycarbonyl-1,4-phenylenecarbonyloxy-1,4-phenylenecarbonyl] (PTOBDME), [C34H36O8] n , synthesized in our laboratory and thermally characterized by differential scanning calorimetry (DSC), was performed to explain both its cholesteric mesophase and 3D crystalline structure. Conformational analysis (CA) was run for the monomer both by systematic search and with molecular dynamics (MD) simulations. Minima energy conformers were “polymerized” with Cerius2 and helical, cholesteric molecules were obtained in all cases. Our models agree with the chiral behavior observed by X-ray diffraction (XRD), thermooptical analysis (TOA) and circular dichroism (CD) experiments. Crystal packing of the polymer molecules were simulated in cells with parameters a and b obtained from experimental powder X-ray diffraction patterns and c calculated from the translational repetitive unit during the theoretical polymerization. Recalculated X-ray powder diffraction patterns of our models matched the observed ones. Morphology simulation from those crystal models is in good agreement with the crystals observed by optical microscopy. We have also modeled the self-associating nature of those polyesters when dispersed in aqueous media. Simulation of our models surrounded by different solvents, such as water and chloroform, were performed by calculating their interaction energies, coordination numbers, and mixing energies, applying Monte Carlo simulation techniques based on the Flory-Huggins theory. These results were compared with their experimental vibrational Fourier transform (FT)–Raman spectra in the regions in which structural marker bands of the polymer appear.  相似文献   

4.
A strain-induced crystallization behavior of hydroxypropyl cellulose (HPC) from the thermotropic liquid-crystalline state is described based on morphological observations by electron microscopy. It is shown that originally round-shaped particles behave as a structure unit in formation of a variety of supermolecular architectures of HPC films prepared from the thermotropic melt under shear. In an oriented HPC film obtained under weak shear, many round particles are elongated and aligned in the direction of shear (SD), but with their bodies bent to some degree. As deformation increases further, fibrillation occurs on the surface of the elongated particles, and then the resulting fibrils are arranged in a zigzag fashion along the SD to form a banded structure. In some cases, a pleated arrangement of fibrils is noticeable between bands. The structural transformation mechanism of thermotropic HPC under shear is discussed in detail on the basis of the morphological evidence.  相似文献   

5.
Hydrogen-bonded polar nematic liquid crystal series with the general formula nOBAF (n = 7—12) is studied. The mesomorphic characterization is demonstrated through differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The complexes with short alkyl chains (n=7, 8) present a wide nematic range and monotropic smectic F mesophase, whereas the longer alkyl chain (n=10—12) analogues show high melting and low clearing mesomorphic liquid crystals. The thermal range of the mesophase and the birefringence increase with chain length decreasing. Furthermore, the effect of the nanoparticles (LiNbO3) on the thermal and the electrical behavior of 8OBAF are investigated. The presence of LiNbO3 nanoparticles increases the conductivity and reduces the resistivity of the complex.  相似文献   

6.
The topology of the surface of thin films obtained from cellulose triacetate solutions has been studied using electron microscopy. The domain structure of the physical network of macromolecules (percolation cluster) with the maximum size L ≈ 30 nm of regions with a local orientational order has been established. With an increase in the volume fraction Ω of the cluster to the critical value Ω = 0.91, repacking of domains takes place, which is connected with a decrease in the parameter Ω, L doubling bifurcation of the size L, and formation of regions of long-range orientational order: the mesophase of the polymer.  相似文献   

7.
An identification criterion is proposed and experimentally substantiated for the two independent acoustic mechanisms (vortex and relaxation ones) governing the formation of a system of two-dimensional domains in a planar layer of a cholesteric liquid crystal in the frequency range where the sound wavelength is greater than the step of the cholesteric circuit. The results of measuring the critical compression amplitude in mesophase layers with thicknesses from 40 to 240 μm are presented for frequencies lower and higher than the frequency equal to the inverse relaxation time of the orientation order parameter in a cholesteric liquid crystal. The data are obtained for diluted solutions of cholesterilchloride in a nematic liquid crystal with a circuit step varied from 2 to 30 μm. The concept of the binary nature of the acoustic mechanism that causes destabilization of the planar texture of a cholesteric liquid crystal in the frequency range under consideration is experimentally verified.  相似文献   

8.
The characterization by optical microscopy, X-ray diffraction and differential scanning calorimetry of two new liquid crystalline compounds is presented. The compounds under consideration incorporate in their molecules two chiral centres (one asymmetric carbon and one asymmetric sulphur of a sulphinate group). While the carbon chirality is fixed in the R configuration the sulphur chirality may be either in the S or in the R configuration. A mesophase in a large temperature domain is evidenced for one of the two diastereomers, while both and mesophases are observed in a similar temperature domain for the other one. For both diastereomers and in both mesophases it is possible to observe the coexistence of two different types of optical textures, namely planar cholesteric textures and developable domains. The latter are coiled in a different way than proposed in an earlier publication. More precisely, they form cylindrical or cone-like domains with double-twist properties as observed in the blue phases. The pitch of the helix in the TGB mesophases is evaluated by means of optical reflection observations in samples exhibiting the planar cholesteric textures. For both diastereomers it is also possible to evaluate structural parameters related to the organization within the mesophases. Finally, the induced phase transition - is studied by the application of an AC electric field. Received: 16 June 1997 / Revised: 17 October 1997 / Accepted: 20 November 1997  相似文献   

9.
Polypropylene (PP)/ethylene-octene copolymer (POE) blends with 10–50wt% POE composition were prepared using a twin-screw extruder in the melt state. Mechanical properties of PP and PP/POE blends were tested and the effect of POE content on the crystalline morphology and structure, melting and crystallization behavior, compatiblilty, phase morphology, and the interface cohesiveness of the blends were investigated by polarizing optical microscope (POM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM). The relationship between mechanical properties and microstructure of the PP/POE blends is discussed. The results showed that POE had a dual function of both reinforcing and toughening PP in the range from 10–40wt%, which was attributed to the integrated functions of the degree of crystallinity of the PP phase, phase morphology, and interface cohesiveness of the blend.  相似文献   

10.
《Composite Interfaces》2013,20(7-9):617-630
Biodegradable nanocomposites based on 5 wt% cellulose nanowhiskers (CNW) and polylactic acid (PLA) were prepared using an extrusion process. An anionic surfactant (5, 10 and 20 wt%) was used to improve the dispersion of the CNW in the PLA matrix. The results showed that increased surfactant content resulted in improved dispersion but at the same time degraded the PLA matrix. The results from mechanical testing showed a maximum modulus for the composite with 5 wt% surfactant and as the surfactant content increased, the CNW dispersion improved and the tensile strength and elongation at break was improved compared to its unreinforced counterpart.  相似文献   

11.
The initiation of the formation of strings in low-concentration chiral solutions was experimentally studied. The domains of initiation were classified according to dimensions: (0–3)D. The dipole-dipole mechanism of the formation of anisotropic nucleation in a mesophase was considered. The role of dispersion interactions in the assembly of supramolecular stacks was estimated at ~0.3–0.4 eV. The threshold values of string formation in chiral mixtures were determined. A phenomenon of the formation of paired strings was established and characterized.  相似文献   

12.
Ultrasound (US) drug release system using cellulose based hydrogel films was developed as triggered to mimosa. Here, the mimosa, a fascinating drug to cure injured skin, was employed as the loading drug in cellulose hydrogel films prepared with phase inversion method. The mimosa hydrogels were fabricated from dimethylacetamide (DMAc)/LiCl solution in the presence of mimosa, when the solution was exposed to ethanol vapor. The US triggered release of the mimosa from the hydrogel matrix was carried out under following conditions of US powers (0–30 W) and frequencies (23, 43 and 96 kHz) for different mimosa hydrogel matrix from 0.5 wt% to 2 wt% cellulose solution. To release the drug by US trigger from the matrix, the better medicine release was observed in the matrix prepared from the 0.5 wt% cellulose solution when the 43 kHz US was exposed to the aqueous solution with the hydrogel matrix. The release efficiency increased with the increase of the US power from 5 to 30 W at 43 kHz. Viscoelasticity of the hydrogel matrix showed that the hydrogel became somewhat rigid after the US exposure. FT-IR analysis of the mimosa hydrogel matrixes showed that during the US exposure, hydrogen bonds in the structure of mimosa–water and mimosa–cellulose were broken. This suggested that the enhancement of the mimosa release was caused by the US exposure.  相似文献   

13.
The character of packing of double-stranded DNA molecules in particles of liquid-crystal dispersions formed as a result of the phase exclusion of DNA molecules from aqueous salt polyethylene glycol solutions has been estimated by comparing the circular dichroism (CD) spectra of these dispersions recorded at different osmotic pressures and temperatures. It is shown that the first cycle of heating of dispersion particles with hexagonally packed double-stranded DNA molecules leads to the occurrence of abnormal optical activity of these particles, which manifests itself in the form of a strong negative CD band, characteristic of DNA cholesterics. Moreover, subsequent cooling is accompanied by a further increase in the abnormal optical activity, which indicates the existence of the “hexagonal → cholesteric packing” phase transition, controlled by both the osmotic pressure of the solution and its temperature. The result obtained can be described in terms of “quasi-nematic” layers composed of orientationally ordered DNA molecules in the structure of dispersion particles. There are two possible ways of packing for these layers, which determine their hexagonal or cholesteric spatial structure. The second heating → cooling cycle confirms these results and is indicative of possible differences in the packing of double-stranded DNA molecules in the hexagonal phase, which depend on the osmotic pressure of the solution.  相似文献   

14.
The chain dynamics in methyl cellulose (MC), hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) were studied with the aid of field-cycling NMR relaxometry technique in the temperature range from 300 to 480 K that is above the glass transition, but below thermal degradation. The frequency dependence of proton spin-lattice relaxation time was determined between 24 kHz and 40 MHz for selected temperatures. The experimental spin-lattice relaxation dispersion data were fitted with the power law relations of T(1) proportional variant omega(gamma) predicted by the tube/reptation model. The exponent's values found from the fitting procedure for MC, HPMC and HPC almost exactly match the ones predicted in tube/reptation model for limit II (gamma=0.75) and in MC also for limit III (gamma=0.50). Remarkably, this finding concerns the polymers in networks formed of the same polymer species.  相似文献   

15.
We studied a new kind of W/O emulsions based on a lyotropic liquid crystal as the aqueous droplet phase. The cholesteric phase, a solution hydroxypropyl cellulose in water was dispersed in the continuous oil matrix, paraffin oil or heptane. We made a specific choice of surfactant in order to impose director anchoring conditions at the oil-water interface and orient the liquid crystal inside the droplet. The strong anchoring conditions resulted in a topological defect inside the droplets of size above the critical value R*. The defect elastic energy creates a barrier against droplet coalescence, the effect of topological size selection. We have studied the orientation of the director inside the droplets and their size distribution.  相似文献   

16.
Flat cellulose films were prepared and morphologically modified by spin coating a cellulose/N-methylmorpholine-N-oxide/H2O solution onto silicon oxide substrates pre-coated with a cationic polyelectrolyte. Spin-coated cellulose films were allowed to stably form on the silicon oxide substrates by pretreatment with either polydiallyldimethylammonium chloride (PDADMAC) or polyvinylamine (PVAm). The film surfaces obtained were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). AFM topographical images of the cellulose film surfaces showed a different morphology depending on the underlying polymer, where PVAm pretreatment brought about an anisotropic surface topology. These results suggest that the specific attraction acting at the cellulose/polymer interface influences both the film formation and surface morphology of the cellulose layer. Differences in the solvent used to precipitate cellulose caused variations in the surface roughness by affecting the cellulose separation behavior. The morphological features of spin-coated cellulose film surfaces could be altered to some extent by these film preparation techniques.  相似文献   

17.
A liquid crystal optical device made of an optically anisotropic heterostructure is considered. The device consists of a cholesteric liquid crystal (CLC) layer sandwiched by two phase-shifting anisotropic layers of a nematic liquid crystal (NLC). In this structure each of the NLC layers is a quarterwave plate. The problem is solved both by Ambartsumian’s method of layer addition and Muller’s matrix method. The peculiarities of reflection spectra, eigen polarizations, rotation of polarization plane and polarization ellipticity are studied. It is shown that this device can work as a light modulator or a system for obtaining linearly polarized light with electrically tunable rotation of the polarization plane (which is especially important for optical communication), as well as a device for obtaining the linearly polarized light from a non-polarized one.  相似文献   

18.
Hydrazide‐based non‐symmetric liquid crystal dimers were synthesized. The liquid crystalline properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X‐ray diffraction (XRD). These non‐symmetric liquid crystal dimers are evidenced to display the monolayer smectic C phase. The effects of the lateral intermolecular hydrogen bonding as well as the length of the terminal alkyl chains and the spacers on the mesophase are discussed. Our studies reveal that intermolecular hydrogen bonding between the hydrazide groups and microsegregation effect is the driving force for the formation of the monolayer smectic C structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Thermodynamic properties and phase change behaviors of polyethylene glycol (PEG) in blends with cellulose (CELL) were found to be completely different than those of pure PEG. When the CELL fraction of the blend was larger than 5 wt%, PEG within the blend did not melt into a liquid state, as was the case with pure PEG, even at a temperature over 50°C above its melting point. Instead of fusion, a solid-solid phase transition was found in these PEG-CELL blends with an enthalpy as large as 100 J/g.  相似文献   

20.
We study an electronic compensator (EC) as a receiver for a 100-Gb/s polarization division multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system without optical dispersion compensation.EC,including electrical dispersion compensation (EDC),least squares channel estimation and compensation (LSCEC),and phase compensation (PC),is used to compensate for chromatic dispersion (CD),phase noise,polarization mode dispersion (PMD),and channel impairments,respectively.Simulations show that EC is highly effective in compensating for those impairments and that the performance is close to the theoretical limitation of optical signal-to-noise rate (OSNR),CD,and PMD.Its robustness against those transmission impairments and fiber nonlinearity are also systematically studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号