首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polypropylene/multiwalled carbon nanotubes (PP/MWNTs) nanocomposites were prepared by a melt compounding process. The morphology and nonisothermal crystallization of these nanocomposites were investigated by means of optical microscopy, scanning electron microscopy, and differential scanning calorimetry. Scanning electron microscope micrographs of PP/MWNTs composite showed that the MWNTs were well dispersed in the PP matrix and displayed a clear nucleating effect on PP crystallization. Avrami theory, modified by Jeziorny and Mo's method, was used to analyze the kinetics of the nonisothermal crystallization process. It was found that the addition of MWNTs improved the crystallization rate and increased the peak crystallization temperature of the PP/MWNTs nanocomposites as compared with PP. The results show that the Jeziorny theory and Mo's method successfully describe the nonisothermal crystallization process of PP and PP/MWNTs nanocomposites.  相似文献   

2.
In this work, syndiotactic polypropylene/multiwalled carbon nanotubes (MWCNT) nanocomposites, in various concentrations, were produced using melt mixing. The influence of the addition of MWCNT on the morphology, crystalline form, and the thermal and electrical properties of the polymer matrix was studied. To that aim, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, and dielectric relaxation spectroscopy were employed. Significant alterations of both the crystallization behavior and the thermal properties of the matrix were found on addition of the carbon nanotubes: conversion of the disordered crystalline form I to the ordered one, increase of the crystallization temperature and the degree of crystallinity, and decrease of the glass transition temperature and the heat capacity jump. Finally, the electrical percolation threshold was found between 2.5–3.0 wt.% MWCNT. For comparison purposes, the results of the system studied here are also correlated with the findings from a previous work on the isotactic polypropylene/MWCNT system.  相似文献   

3.
The effect of isothermal treatment on network formation of nanoscale dispersed carbon black (CB) particles in mild-compounded isotactic polypropylene (iPP)/CB composite is investigated. Network formation of CB took place in a quiescent melt without any flow and expansion since the isothermal treatment of the composite was carried out under high pressure conditions. TEM was used to inspect the network formation of the well-dispersed CB. Resistivity temperature and dynamic rheological behaviors of samples before and after isothermal treatment were examined to investigate the relationship between fillers’ network formation and electrical conductivity enhancement.  相似文献   

4.
Polypropylene (PP) blends based on isotactic polypropylene (iPP), propylene-ethylene block copolymer (bPP), and propylene–ethylene random copolymer (rPP) were prepared by melt blending and the effects of content of bPP and rPP on the shrinkage during solidification and storage and mechanical properties of the blends were studied. It was found that the addition of polypropylene copolymer could effectively reduce the processing shrinkage of iPP and the lowest shrinkage of the blends was achieved at a loading of 2 wt% bPP or rPP. The flexural modulus and tensile strength of the blends decreased a little while the impact strength and elongation at break were improved greatly compared with those of iPP.  相似文献   

5.
A pulse pressure was imposed on the melt in the injection molding cavity during the injection and holding pressure stages, called vibration-assisted injection molding (VAIM) technology. With the VAIM technology, biaxially self-reinforced high-density polyethylene (HDPE) samples were prepared and the physical properties affected by the vibration processing conditions were studied. The tensile properties can be improved in both the machine direction (MD) and the transverse direction (TD) by changing the vibration frequency and vibration pressure amplitude, respectively. The elongation at break increased with increasing the vibration frequency for the VAIM sample processed at constant low vibration pressure amplitude; the yield strength increased with increasing the vibration pressure amplitude for the VAIM sample prepared at constant low vibration frequency. The softening point temperature for the VAIM sample increased by 8°C compared with a conventional injection-molded (CIM) sample.  相似文献   

6.
Microwave heating technology has numerous advantages compared with the traditional heating methods and has been widely used to process materials. However, most thermoplastics do not possess a sufficiently high dielectric property to be heated by microwaves. In this study, carbon black (CB) was utilized as the microwave absorber to improve the microwave heatability of isotactic polypropylene (iPP). Effects of CB contents on the microwave heatability of iPP/CB composites were studied. The temperature of iPP/CB composites with relatively low CB content (5% and 10%) increased slowly and tended to remain unchanged after 120 s of microwave exposure. In contrast, iPP/CB composites with relatively high CB content (15% and 20%) presented a much faster heating rate and the temperature of the sample kept increasing with the prolongation of exposure time. On the basis of the fact that iPP/CB composites with different CB contents have different microwave heatability, a novel oriented structure, in which the core layer has relatively high orientation and the surface layer has relatively low orientation, was prepared by selective microwave heating. Two-dimensional wide angle X-ray diffraction (2D-WAXD) analysis indicates that the orientation parameter calculated by the (040) plane of the surface layer (0.45) was lower than that of the core layer (0.83). The novel oriented structure is different from the common skin-core structure formed in the samples of semicrystalline polymers by traditional polymer processing methods, in which orientation of the skin layer is higher than that of the core layer. The novel oriented structure has not been reported before to our knowledge and its formation mechanism is also discussed in this paper.  相似文献   

7.
Epoxy nanocomposites with unmodified multiwalled carbon nanotubes (u-MWCNTs) and silanized multiwalled carbon nanotubes (si-MWCNTs) were prepared by a cast molding method. The effects of 3-aminopropyltriethoxysilane functionalization of MWCNTs on thermal, tensile, and morphological properties of the nanocomposites were examined. The nanocomposites were characterized by thermogravimetric analysis, dynamic mechanical thermal analysis, and tensile testing. The results showed that epoxy composites based on si-MWCNTs showed better thermal stability, glass transition temperature, and tensile properties than the composites based on u-MWCNTs. These results prove the effect of silane functionalization on the interfacial adhesion between epoxy and MWCNTs. This was further confirmed by morphology study of fractured surfaces of nanocomposites by field emission scanning electron microscopy.  相似文献   

8.
Maleic anhydride grafted polypropylene (PP-g-MA) was employed as the compatibilizer and carbon nanotubes (CNTs) or hydroxylated CNTs as reinforcements for polypropylene/wood flour composites. The results showed that when the PP-g-MA loading level was 10 wt%, the bending strength, tensile strength, Izod notched impact strength, and elongation at break of PP-wood composites were enhanced by 85% (66.3 MPa), 93% (33.7 MPa), 5.8% (2.01 kJ/m2), and 64% (23%), respectively, relative to the uncompatibilized composites. The introduction of pristine CNTs only improved slightly the overall mechanical properties of the compatibilized composites due to poor interfacial compatibility. Unlike CNTs, incorporating hydroxylated CNTs (CNT-OH) could significantly improve all of the mechanical properties; for instance, at 0.5 wt% CNT-OH loading, the flexural strength and tensile strength reached 68.5 MPa, and 40.4 MPa about 6.6% higher than that for the composites with the same CNT loading. Furthermore, CNT-OH also remarkably enhanced the storage modulus. Contact angle and morphology observations indicated that the increases in mechanical properties could be attributed to the improvements of interfacial interactions and adhesions of CNTs with the matrix and fillers.  相似文献   

9.
In this work, isotactic polypropylene (iPP) melt was slowly extruded through a slit die of a single-screw extruder. Once the iPP melt left the die, it was uniaxially stretched at different stretching rates (SRs). Via this process its microstructure can be manipulated, it was subsequently investigated by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and Fourier transform infrared spectroscopy (FTIR). Furthermore, the mechanical properties (including tensile strength, modulus, toughness, and strain-hardening) were investigated. The results showed that the tensile strength and modulus of the melt-stretched iPP films gradually increased with increasing SRs. In addition, the toughness and elongation at break showed maximum values for iPP films melt-stretched at 30 cm/min. Moreover, compared with other melt-stretched films, the iPP films melt-stretched at 90 cm/min exhibited an obvious strain-hardening behavior at lower strain.  相似文献   

10.
The influence of multi-walled carbon nanotubes (MWCNTs) on the crystallization and directional tensile properties of high-density polyethylene (HDPE) was studied for samples prepared by dynamic-packing injection molding (DPIM). Oscillatory shear was imposed on the gradually cooled melt during the packing solidification stage of DPIM. For the oriented composites containing 1.8 wt% MWCNTs, the tensile fracture behavior showed typical brittle features along the flow direction (FD) and perpendicular direction (PD), which were almost the same as those that occurred in oriented pure HDPE. The elongation at break along both directions decreased due to the incorporation of MWNCTs in the oriented composites compared with the oriented pure HDPE. However, the tensile strength of the oriented HDPE/MWCNT composites was greatly improved along the FD due to the presence of carbon nanotubes; meanwhile, it was not weakened along the PD. In scanning electron microscopy observations, it was found that there were some oriented hybrid shish-kebab structures in a nanometre scale in the oriented HDPE/MWCNT composites, but not in its isotropic composites. This suggests that MWCNTs were involved in the shear-induced crystallization of HDPE. Differential scanning calorimetry measurements confirmed that the crystallinity of oriented HDPE composites with 1.8 wt% MWCNTs was higher than those of isotropic HDPE and isotropic composites, but was not obviously higher than that of oriented pure HDPE. These findings demonstrate that MWCNTs indeed affected the formation of crystalline structures, but did not greatly influence the crystallinity of HDPE under shear flow. The transition of crystalline morphology might be the reason for change in tensile behavior for the oriented HDPE/MWCNT composites compared with the oriented pure HDPE.  相似文献   

11.
Waterborne polyurethane (WBPU) was synthesized by a polyaddition reaction with toluene diisocyanate (TDI), polytetramethylene ether glycol (PTMEG), dimethylol propionic acid (DMPA), and triethylamine (TEA). Aqueous polyurethane dispersions with three different weight fractions, 30, 40, and 50 wt%, were prepared. All the dispersions made with these concentrations showed Newtonian viscosity behavior. Multiwalled carbon nanotubes (CNTs) were functionalized using a mixture of sulfuric and nitric acid at a ratio of 3:1 and added to these dispersions in two different loads of 0.1 and 0.5 wt%. Ultraviolet visible spectrometry (UV/Vis) spectroscopy proved the formation of stable suspensions following ultrasonic agitation. The rheology of these suspensions was characterized using dynamic and steady-state measurements. The higher amount of CNT in the suspension imparted non-Newtonian and complex viscoelastic behavior. This was attributed to a physical network formed due to the presence of the functionalized CNTs. The Cox-Merz rule was not observed for these suspensions.  相似文献   

12.
Nanocomposites based on polypropylene (PP) and multiwall carbon nanotubes (MWNT) have been prepared through melt blending. Scanning electron microscopy (SEM) observations indicate that nanotubes were dispersed almost homogeneously throughout the matrix; however, some aggregates were also observed at high nanotubes loading. Rheological studies showed that at low shear rates, there is an increase in steady shear viscosity and shear stress of samples with increasing of nanotubes concentration. However, at high shear rates nanocomposites behave like pure PP. The activation energy of flow showed an increasing trend and has a maximum at 1wt% MWNT content. It was found that incorporation of nanotubes causes a remarkable decrease in surface and volume resistivity values of the polymeric matrix. The presence of CNTs improved the tensile and flexural properties of the polymeric matrix.  相似文献   

13.
The rheology and morphology of multi-walled carbon nanotube (MWNT)/polypropylene (PP) nanocomposites prepared via melt blending was investigated. The minor phase content of MWNT varied between 0.25 and 8 wt%. From morphological studies using a scanning electron microscopy technique a good dispersion of carbon nanotubes in the PP matrix was observed. The rheological studies were performed by a capillary rheometer, and mechanical properties of the nanocomposites were studied using a tensile and flexural tester. Both PP and its nanocomposites showed non-Newtonian behavior. At low shear rates the addition of MWNT content causes an increase in viscosity; however, viscosity is less sensitive to addition of MWNT content at higher shear rates. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. From this calculation it was concluded that the temperature sensitivity of nanocomposites was increased by increasing of nanotube content. An increase in tensile and flexural moduli and Izod impact strength was also observed by increasing the MWNT content. From rheological and mechanical tests it was concluded that the mechanical and rheological percolation threshold is at 1.5 wt%.  相似文献   

14.
用原位聚合法制备了聚吡咯/碳纳米管(PPy/MWNTs)复合物。采用XRD、TGA、FT-IR、SEM、四探针测试仪和网络分析仪表征了PPy/MWNTs复合物的组成、结构、形貌和电性能。研究了不同条件,如质子酸及其浓度、引发剂和单体的物质的量比(nAPS/nPy)、MWNTs的质量分数(ωMWNTs)和反应时间对PPy/MWNTs复合物电性能的影响。结果表明,当磷酸浓度为0.1 mol/L、nAPS/nPy为1:1、ωMWNTs等于45 wt%、反应时间12 h时,制备的PPy/MWNTs复合物的导电性和介电损耗性能最好。  相似文献   

15.
用原位聚合法制备了聚吡咯/碳纳米管( PPy/MWNTs)复合物.采用XRD、TGA、FT-IR、SEM、四探针测试仪和网络分析仪表征了PPy/MWNTs复合物的组成、结构、形貌和电性能.研究了不同制备条件,如质子酸及其浓度、MWNTs的质量分数(ωMWNTs )、引发剂和单体的物质的量比( nAPS/nPy )和反应时间对PPy/MWNTs复合物电性能的影响.结果表明,当磷酸浓度为0.1 mol/L、nAPS/nPy为1:1、ωMWNTs等于45 wt%、反应时间12 h时,制备的PPy/MWNTs复合物的导电性和介电损耗性能最好.  相似文献   

16.
The calcium salt of hexahydrophthalic acid (Hyperform HPN-20E) is an effective nucleating agent for polyethylene which was developed by Milliken Chemical Co., (USA) in recent years. In this paper, the properties and crystallization behaviors of isotactic polypropylene (iPP) in the presence of Hyperform HPN-20E were investigated by using differential scanning calorimetry and polarized optical microscopy. Addition of Hyperform HPN-20E improved the tensile, flexural and optical properties of iPP significantly and increased the crystallization rate of iPP greatly. The nucleation effects were comparable to the nucleation efficiency of a highly effective commercial iPP nucleating agent Hyperform HPN-68. When the addition amount of Hyperform HPN-20E in iPP was 0.2 wt.%, the tensile strength, tensile modulus, flexural strength, and flexural modulus of iPP were increased by 10.81%, 8.65%, 16.67%, and 11.96%, respectively, compared to those of pure iPP; the haze value was decreased by 42.44% and the crystallization peak temperature was increased by 11.2°C. In addition, incorporation of Hyperform HPN-20E in iPP greatly reduced the spherulite size of iPP.  相似文献   

17.
Using a low-frequency, vibration-assisted injection molding (VAIM) device, the effects of vibration variables (frequency and amplitude) on mechanical properties and thermal softening temperature of high-density polyethylene (HDPE) injection moldings were investigated. For VAIM-processed samples, the mechanical properties can be improved by changing vibration frequency and vibration pressure amplitude. Injected at a constant vibration pressure amplitude, a low range of frequency (below 0.7 Hz) was favorable for increasing yield strength; in the high range of frequency (0.7 Hz < f < 2.33 Hz) the yield strength remained at a plateau. Injected at a constant frequency (0.7 Hz) the yield strength increased sharply with decreased elongation when applying large vibration pressure amplitude. The maximal yield strength and Young's modulus were 60.6 MPa and 2.1 GPa for a VAIM sample compared with 39.8 MPa and 1.0 GPa for a conventional injection-molded (CIM) sample, respectively; there was also a 10°C increase in Vicat softening point temperature.  相似文献   

18.
Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) were employed to study the microstructure of self-reinforced high-density polyethylene (HDPE) prepared by conventional injection molding (CIM) and a low frequency vibration-assisted injection molding (VAIM). SEM micrographs following permanganic etching showed the self-reinforcement of HDPE is mainly due to the existence of shish-kebab morphology within the core region for VAIM-processed HDPE samples. Pronounced molecular alignment was identified by the WAXD data. An approximate 9% increase in the crystallinity was confirmed by DSC. Both preferred molecular orientation and increased crystallinity serve to yield stronger VAIM-processed injection moldings.  相似文献   

19.
Multi-scale hybrid composite laminates of epoxy/carbon fiber (CF) reinforced with multi-walled carbon nanotubes (MWCNTs) were fabricated in an autoclave. For laminate fabrication, 0.5 wt% of pristine MWCNTs or silane-functionalized MWNCTs (f-MWCNTs) were dispersed into a diglycidyl ether of bisphenol-A epoxy system and applied on the woven carbon fabric. The neat epoxy/CF composite and the MWCNTs-reinforced epoxy/CF hybrid composites were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), tensile testing, and field emission scanning electron microscopy (FE-SEM). A significant improvement in initial decomposition temperature and glass transition temperature of epoxy/CF composite was observed when reinforced with 0.5 wt% of f-MWCNTs. The coefficient of thermal expansion (CTE), measured by TMA, diminished by 22% compared to the epoxy/CF composite, indicating an improvement in dimensional stability of the hybrid composite. No significant improvement in tensile properties of either MWCNTs/epoxy/CF composites was observed compared to those of the neat epoxy/CF composite.  相似文献   

20.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号