首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composite Interfaces》2013,20(5):459-466
Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.  相似文献   

2.
The aim of the study was to determine thermo-mechanical properties and applicability of sunflower husk waste as a filler for ultra low density polyethylene composites. The post agricultural waste filler was milled and chemically treated with (3-aminopropyl)triethoxysilane (3-APS). The amount of filler used was 5, 10 and 20 wt%. The mechanical and thermal properties of the composites containing unmodified and modified natural fillers were determined in the course of static tensile test, rebound resilience by Schob method, and dynamic mechanic thermal analysis. The influence of filler loading and chemical modification of the filler on the morphology of natural composites was evaluated by SEM analysis.  相似文献   

3.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

4.
The electromagnetic and microwave absorption properties of the Z-type Ba-ferrite/polymer composites were investigated. The results showed that particle size of the Ba-ferrite fillers has a significant influence on the effective properties of the two-phase composites. The relative dielectric constant and initial permeability of such composites are about 95 and 5.2 at high frequency under certain combination of ferrite fillers with different particle size, respectively. Microwave absorption properties of the composites are simultaneously influenced due to the strong correlation between reflection loss and electromagnetic parameters of the ferrite/polymer composites.  相似文献   

5.
《Composite Interfaces》2013,20(7-9):759-770
New composites materials, 100% ecofriendly based on modified wheat flour as matrix and flax fiber as fillers have been obtained by means of an extrusion process. The wheat flour matrix contains non-toxic plasticizers and is mixed well with natural fibers. One sample series without specific fiber surface treatment and a second series with a mercerization surface treatment have been prepared. The content of fillers varies from 0% w/w to 20% w/w. In this work the performances of these new composites in term of thermal stability, mechanical behaviours are compared and discussed in regard to the fiber treatment efficiency and composition. We observe an interesting behaviour: the efficiency is found the best for a fiber composition close to 10% w/w.  相似文献   

6.
《Composite Interfaces》2013,20(7-9):639-657
Short fibers and wood flour were selected as fillers in the production of two types of unsaturated polyester composites (bisphenolic and isophthalic-based thermosets). Sisal fibers were subjected to washing in order to remove the organic coating on the fibers (which were originally prepared for cord manufacture) and to maleic anhydride (MAN) esterification. The effect of these treatments on the thermomechanical properties of the composites, as well as on the mechanical properties (flexural and compression) and water absorption was investigated. All the results are coincident in showing the improved interfacial adhesion obtained by washing and mainly by esterification of the fibers. Additionally, hybrid wood flour sisal composites were prepared and their mechanical properties compared to those of the one-filler composites. The hybrid composites showed improved modulus and maximum stress.  相似文献   

7.
Maleic anhydride grafted polypropylene (PP-g-MA) was employed as the compatibilizer and carbon nanotubes (CNTs) or hydroxylated CNTs as reinforcements for polypropylene/wood flour composites. The results showed that when the PP-g-MA loading level was 10 wt%, the bending strength, tensile strength, Izod notched impact strength, and elongation at break of PP-wood composites were enhanced by 85% (66.3 MPa), 93% (33.7 MPa), 5.8% (2.01 kJ/m2), and 64% (23%), respectively, relative to the uncompatibilized composites. The introduction of pristine CNTs only improved slightly the overall mechanical properties of the compatibilized composites due to poor interfacial compatibility. Unlike CNTs, incorporating hydroxylated CNTs (CNT-OH) could significantly improve all of the mechanical properties; for instance, at 0.5 wt% CNT-OH loading, the flexural strength and tensile strength reached 68.5 MPa, and 40.4 MPa about 6.6% higher than that for the composites with the same CNT loading. Furthermore, CNT-OH also remarkably enhanced the storage modulus. Contact angle and morphology observations indicated that the increases in mechanical properties could be attributed to the improvements of interfacial interactions and adhesions of CNTs with the matrix and fillers.  相似文献   

8.
《Composite Interfaces》2013,20(7-9):685-698
Polymer composites filled with natural organic fillers have gained a significant interest during the last few years, because of several advantages they can offer compared with properties of inorganic-mineral fillers. However, these composites (based, in most cases, on polyolefins) often show a reduction in some mechanical properties. This is mainly due to the problems regarding dispersion of the polar filler particles in the non-polar polymer matrix and their interfacial adhesion with polymer chains. In this work, polypropylene–wood flour composites were prepared and the effect of the addition of a maleated polypropylene was investigated. The two materials were compounded by an industrial co-rotating twin screw extruder, with two different compositions, without and with addition of Licomont AR504® (maleic anhydride-grafted polypropylene wax). The extruded material was then compression molded, which provided the specimens for tensile and impact tests. Water uptake was measured; the morphology of the fracture surfaces of the samples coming out from mechanical tests was investigated through SEM analysis. Rheological characterization was carried out as well. The addition of the adhesion promoter allowed a decrease in water uptake; mechanical properties were improved as well, especially elastic modulus and tensile strength; impact strength increased in the case of unnotched samples, while notched ones did not show remarkable differences. SEM analysis of the fracture surfaces also showed an overall change in the morphology as a consequence of the utilization of the adhesion promoter.  相似文献   

9.
There has been a growing interest in the utilization of sisal fibres as reinforcement in the production of polymeric composite materials. Natural fibres have gained recognition as reinforcements in fibre polymer–matrix composites because of their mechanical properties and environmental friendliness. The mechanical properties of sisal fibre-reinforced polymer composites have been studied by many researchers and a few of them are discussed in this article. Various fibre treatments, which are carried out in order to improve adhesion, leading to improved mechanical properties, are also discussed in this review paper. This review also focuses on the influence of fibre content and fabrication methods, which can significantly affect the mechanical properties of sisal fibre-reinforced polymer composites.  相似文献   

10.
Viscoelastic and deformational behavior of soft magnetic elastomers with hard magnetic fillers under the influence of a magnetic field is studied by different experimental techniques. The magnetic elastomers used in this work were synthesized on the basis of silicone rubber filled with FeNdB particles and were magnetized in a field of 3 and 15 kOe. We have shown that due to high residual magnetization the materials demonstrate well pronounced non-elastic behavior already in the absence of any external magnetic field. In particular, in contrast to magnetic elastomers based on soft magnetic fillers their elastic modulus is strain-dependent. Under the influence of external magnetic field the storage and loss moduli of magnetic elastomers with hard magnetic filler can both increase and decrease tremendously.  相似文献   

11.
《Composite Interfaces》2013,20(2-3):65-84
Reinforcing of polylactide (PLA) with fillers can be an interesting solution to reduce its global price and to improve specific properties. Starting from calcium sulfate (gypsum) as by-product of the lactic acid fermentation process, novel high performance composites have been produced by melt-blending PLA and this filler after a previous specific dehydration performed at 500°C for min. 1 h. Due to PLA sensitivity towards hydrolysis, it has first been demonstrated that formation of β-anhydrite II (AII) by adequate thermal treatment of calcium sulfate hemihydrate is a prerequisite. Then, the modification of filler interfacial properties with different coating agents such as stearic acid (SA) and stearate salts has been considered. The effect of surface treatment on molecular, thermal and mechanical properties has been examined together with the morphology of the resulting composites. To take advantage of the improved lubricity and better wetting characteristics, the filler was coated by up to 2% (by weight) SA. The coating of the filler leads to PLA–AII composites that surprisingly exhibit thermal stability, cold crystallization and enhanced impact properties. Such remarkable performances can be accounted for by the good filler dispersion as evidenced by SEM–BSE imaging of fractured surfaces. As far as tensile proprieties are concerned, notable utilization of uncoated filler or filler coated by stearate salts leads to PLA–AII composites characterized by higher tensile strength and Young's modulus values. The study represents a new approach in formulating new melt-processable grades with improved characteristic features by using PLA as polymer matrix.  相似文献   

12.
Blends of ethylene-propylene diene terpolymer/acrylonitrile butadiene copolymer (EPDM/NBR) loaded with different types [(N326-HAF) and (N774-SRF)] and ratios of carbon black (CB) fillers were prepared. The mechanical properties of the EPDM/NBR rubber blends unloaded and loaded with different ratios of CB were investigated. Among the blends, the one with 75% EPDM and 25% NBR, both loaded and unloaded with CB, were found to exhibit the highest tensile strength and elongation at break. The observed changes in the mechanical properties of the blends were correlated to the morphology as observed by scanning electron microscopy. The changes of the electrical resistivity of the rubber blend composites during compression were investigated. The experimental results were explained from the position that an external pressure induces either an increase or decrease of the resistivity of the blend composites according to whether annihilation or creation of effective conductive paths occurs, respectively.  相似文献   

13.
We review the thermal properties of graphene and multilayer graphene, and discuss graphene’s applications in thermal management of advanced electronics and optoelectronics. A special attention is paid to the use of the liquid-phase-exfoliated graphene and multilayer graphene as the fillers in the thermal interface materials. It has been demonstrated that addition of an optimized mixture of graphene and multilayer graphene to the composites with different matrix materials produces the record-high enhancement of the effective thermal conductivity at the small filler loading fraction (f≤10 vol%). The thermal conductivity enhancement due to the presence of graphene in the composites has been observed for a range of matrix materials used by industry. The hybrid composites where graphene is utilized together with metallic micro- and nanoparticles allow one to tune both the thermal and electrical conductivity of these materials. Theoretical considerations indicate that the graphene-based thermal interface materials can outperform those with carbon nanotubes, metal nanoparticles and other fillers owing to graphene’s geometry, mechanical flexibility and lower Kapitza resistance at the graphene–base material interface.  相似文献   

14.
Acrylate elastomer (ACE) synthesized ourselves was mixed with antioxidative and UV stabilizer into polyoxymethylene (POM) matrices to investigate the effects of the ACE phase on the mechanical properties and UV stability of POM. For comparison, POM blended with same amount of TPU instead of ACE was used. Dispersion of the elastomer particles in POM matrices was investigated using SEM micrograph. Crystallinities of the specimen before and after UV ageing were also measured. The surface molecular weight and the mechanical properties of modified POM after UV ageing were determined. The result showed that excellent mechanical properties of the POM composites after UV‐irradiation could be obtained by blending with ACE.  相似文献   

15.
Mechanical and microwave absorbing properties of carbon-filled polyurethane   总被引:1,自引:0,他引:1  
Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.  相似文献   

16.
M. Madani 《Molecular physics》2013,111(7):849-857
This paper reports the results of studies on the thermal and electrical properties of gamma radiation cured composites based on ethylene propylene dieyne rubber (EPDM) reinforced with different concentrations of micro- and nano-silica. The effect of gamma irradiation in the presence of ethylene glycol dimethacrylate (EGDM) as radiation sensitizer on melt flow properties of EPDM was also studied. Thermogravimetric studies of the composites show that the degradation of vulcanizates is controlled mainly by the silica type and its concentration. Increasing the amount of micro- or nano-silica in the vulcanizate decreases the maximum rate of decomposition of the major degradation step compared with that of the unfilled-cured one. The micro- and nano-composites exhibited remarkable heat resistance properties compared with that of the pure EPDM as the filler dispersion of silica inhibited the thermal degradation of the polymeric matrix, which led to the micro and nano-composites showing great improvement in thermal stability. A considerable change in decomposition rate is observed by increasing filler loading from 10 to 39 phr. The dielectric properties of such composites are affected by the silica type and concentration. The dielectric constant and ac-conductivity for all composites were found to increase with increasing silica loading, which is mainly due to the interfacial polarization. The ac-conductivity values of silica/EPDM composites exhibit a strong frequency dependence with both fillers used. The conductance and dielectric constant values have been fitted using a conduction model for all samples.  相似文献   

17.
环氧树脂电气绝缘性能优良,但是其在脉冲功率设备中充当绝缘子时,表面容易带电且不易衰减,当表面电荷集聚到一定的程度会造成局部放电甚至发展为沿面闪络。为了提高环氧树脂的沿面闪络性能,用中心粒径为1μm的氢氧化铝(ATH)无机填料来改善环氧树脂复合材料的表面性能。分别制备了ATH填料质量分数为0%(纯环氧),20%,40%,60%,80%和100%的ATH/环氧树脂复合材料试样。用电声脉冲法研究了ATH填料对环氧树脂复合材料电荷衰减性能的影响,对比了试样直流极化场强为10kV/mm和30kV/mm的试验结果。结果表明:ATH/环氧树脂复合材料电荷的衰减常数不仅与填料的质量分数有关,而且与试样的带电量有关。  相似文献   

18.
A comparison has been made of the specific features of the fine structure of thermodesorption spectra of polymethylmethacrylate and its composites with nanocarbon fillers: detonation nanodiamonds, fullerene C60, and multiwalled carbon nanotubes. The influence of the fillers on the shape of the thermodesorption spectra has been interpreted as a result of the chemical interaction between functional groups of macromolecules of the polymer matrix and active centers of filler nanoparticles.  相似文献   

19.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

20.
In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号