首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon black (CB) is one of the most important fillers for rubber and plastics materials. How to describe the CB network is a fundamental problem for establishing relationships between the CB network and the mechanical properties of filled rubber. In view of the electrical conductivity of CB, an infinite circuit consisting of numerous contact resistors, interconnected with each other, is proposed to simulate the CB network in filled rubber; the resistances were determined by considering the tunneling conduction mechanism and a Gaussian distribution for the CB aggregate junction width. As an example, the electrical resistivity of CB (N330) filled natural rubber during uniaxial deformation was studied. It was found that the logarithm of resistivity was an approximately linear function of the extension ratio, and the resistivity increased with the increase of average number of primary particles per aggregates. Additionally, some published experimental points lie between the curves calculated for five primary particles and for seven primary particles per aggregate at extension ratios below 1.2. The calculations suggested that the average number of primary particles per aggregate for CB type N330 might be between five and seven.  相似文献   

2.
It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.  相似文献   

3.
Carbon black (CB) filled powdered natural rubber [P(NR/N234)] was prepared using a patented method of latex/CB coagulation technology. The influence of curing recipes and CB contents on the curing, mechanical, and dynamic properties were studied in depth, and the results were compared with that of NR/N234 compounds based on traditional dry mixing of bale NR and CB. The results showed that, compared with NR/N234, P(NR/N234) showed higher tensile strength, tear strength, rebound elasticity and flexibilities, and the antiabrasion properties were similar, while the dynamic temperature-build-up and dynamic compression permanent set were about 50% of that of NR/N234. The analysis based on scanning electron micrographs (SEM) and the Payne effect showed that the fine dispersion of CB in the rubber and the enhanced interaction between CB and rubber contributed to the excellent properties of P(NR/N234), sufficient that they make P(NR/N234) a potential material for the tread compounds of heavy-duty all-steel cord radial tires.  相似文献   

4.
研究了导电炭黑40b2填充天然橡胶复合材料的导热性能和力学性能随炭黑体积分数的变化规律,并采用扫描电子显微镜观察了炭黑橡胶体系内部的炭黑分布状况.结果表明,导热性能随炭黑体积分数的变化规律存在类似于导电逾渗现象的导热逾渗现象,逾渗阈值在8.3%~13.63%之间.在逾渗阈值之后,复合材料的拉伸强度下降.炭黑橡胶复合材料...  相似文献   

5.
The wet sliding abrasion and abrasion behavior of carbon black (CB)-filled natural rubber (NR) composites were investigated using a Deutsche Industrie Normen (DIN) abrader and compared to their dry abrasion resistance. The results showed that water tended to lubricate the contact between the rubber and the abrader and thus the abrasion loss was reduced. At different applied loads, the abrasion mechanism of the filled vulcanizates was different. When the applied load was below the turning point, the rubber abrasion was mainly fatigue abrasion and the main factor to influence the abrasion was the dynamic loss factor tanδ of the rubber. When the applied load was above the turning point, the rubber abrasion was mainly pattern abrasion and the main factors to influence the abrasion were the mechanical properties, in particular tensile and tear strength.  相似文献   

6.
Carbon black (CB) was modified by liquid grafting and used for natural rubber (NR) reinforcement. Payne effects during NR reinforcement by the graft-modified carbon black (GCB) were analyzed in this paper. The results showed a proportional relationship between filler content and the Payne effect. Rubber compounds with GCB presented weaker Payne effects than their non-modified counterparts. Qualitative analysis of the correlation between filler network structure and filler content was conducted according to the relationship between bound rubber of a rubber compound and shear modulus. The impact of the storage period on the Payne effect was further studied, and the results demonstrated that the longer the storage period of the rubber compound, the stronger the Payne effect tended to be. The mechanisms by which the Payne effects were manifested differed according to the content of the filler in the rubber.  相似文献   

7.
A new method was applied to modify the surface activity of virginal carbon black (VCB). LA‐57, one kind of hindered amine light stabilizer, was adsorbed onto the carbon black surface through a strong shear force induced by the screws of a HAAKE internal mixer. The modified carbon black (MCB) was characterized by FT‐IR and thermogravimetric analysis (TGA). The bound rubber content of the natural rubber (NR) compounded with MCB and VCB varied with the fraction of LA‐57 on the MCB surface. The nonlinear effect at small strains, generally referred as the Payne effect, was investigated in the rubber compounds based on the different bound rubber contents. The NR compound containing the lowest bound rubber content had an obvious Payne effect. Based on the bound rubber content, the types of filler network varied from direct contact mode to the joint rubber shell mechanism.  相似文献   

8.
The structure of the bound rubber, the 1H NMR (nuclear magnetic resonance) relaxation time, and the crosslink density of the physical network and the glass transition, were studied for solution polymerized styrene-butadiene rubber (SSBR) filled by carbon black, to investigate the effects of carbon black on the chain mobility and dynamic mechanical properties. It was found by 1H NMR analysis that the rubber chains were adsorbed on the surface of carbon black to form physical crosslinks and restrict the mobility of the chains, especially for some high-mobility units such as chain ends. It was calculated, according to the molecular weight between adjacent crosslinks, that the main motion units of the tightly adsorbed chains appeared to be similar in size to the chain segments. The glass transition temperature (T g) obtained by differential scanning calorimetry (DSC) could not be used to judge the effect of carbon black on chain mobility, while the appearance and change of the loss-tangent (tan δ) peak at high temperature in dynamic mechanical thermal spectrometry (DMTS) test showed that there were three chain states: free chains, loosely adsorbed chains, and tightly adsorbed chains. The dynamic rheology test showed that the unfilled SSBR compound had the rheological characteristics of entangled chain networks; however the nonlinear viscoelasticities of the filled SSBR were related to the gradual disentanglement of adsorbed chains and free chains. The peaks in tan δ vs. temperature curves implied that the motion unit size decreased with the increase of bound rubber content, and the modulus vs. temperature curve showed an apparently lower mobility of adsorbed chains than that of free chains through the very low dependence of modulus on temperature for the highly filled compounds. The extremely high tensile modulus of the vulcanizate with 63.6% carbon black at room temperature also implied that the adsorbed chains were in the glass state due to their restriction by the carbon black.  相似文献   

9.
The dynamic fatigue behaviors of natural rubber (NR) filled with carbon black (CB) and both nanoclay (NC) and CB at same hardness was evaluated using the stepwise increasing strain test (SIST) and long-term testing. Compared with NR/CB composites, NR/CB/NC nanocomposites exhibited higher fatigue-limited strain, stronger dynamic stress relaxation, and longer compression fatigue life. By examining the fracture morphologies, nonlinear viscoelastic behavior, and hysteresis loss of filled NR, it was found that NR, synergisticly reinforced by NC and CB, exhibited improved anti-fatigue ability than NR filled with CB due to stronger filler–filler interactions between NC and CB (a local filler network) and the high aspect ratio and typical lamellar structure of NC.  相似文献   

10.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

11.
12.
Vulcanization and reinforcement are two important factors contributing to the properties of vulcanized rubber. In order to investigate the influence of carbon black (CB) on chemical crosslinking, three groups of samples with different crosslink densities were prepared. In each group with the same crosslink density, different amounts of CB were introduced. Data fitting showed that delta torque (ΔM = M HM L, the difference between the highest and lowest torques during curing) in the cure curves of each group had a good linear relationship with CB load and extrapolation of the fitting lines almost intercepted the x coordinate at the same value, which indicated that CB had no influence on the chemical crosslinking of the rubber. To verify the above result, a series of nonfilled natural rubber (NR) vulcanizates with different crosslink densities were studied using equilibrium swelling and the swelling ratios were compared with those of corresponding CB filled rubbers with the same sulfur and accelerator amount. The results of both the equilibrium swelling and NMR relaxation parameter measurements showed that CB filled vulcanizates had higher apparent crosslink densities than those of unfilled ones due to the strong interaction between rubber molecules and the surface of the CB particles. The swelling ratios of filled rubbers had a parallel relationship with those of the unfilled ones which indicated that CB had little influence on chemical crosslink density introduced by chemical vulcanization.  相似文献   

13.
The influence of the basic properties of carbon black, such as structure, panicle size, and surface activity on the vulcanization and mechanical properties of filled natural rubber compounds was investigated in detail. This is important for a better understanding of the rubber performance and the mechanism of reinforcement. In particular, the effect of carbon black surface activity, which was changed by introducing one kind of hindered amine light stabilizer on rubber reinforcement is emphasized.  相似文献   

14.
To evaluate the reinforcing potential of pyrolytic carbon black, styrene-butadiene rubber (SBR) was filled with pelletized pyrolytic carbon black (pCBp), N660 industrial CB, their blend in a 1/1 ratio, and the latter also in the absence and presence of additional organoclay (OC). The Shore A hardness of the filled SBR gums was 65 ± 2°. Effects of the compositions on the filler dispersion, cure behavior, dynamic mechanical thermal parameters (including the Payne effect), tensile mechanical (including the Mullins effect), and fracture mechanical (making use of the J-integral concept) properties were studied and discussed. Though pCBp had a higher specific surface weight than CB, the latter proved to be a more active filler with respect to the tensile strength. The opposite tendency was found for the tear strength and fracture mechanics characteristics (J-integral at crack tip opening, tearing modulus, and trouser tear strength). This was traced to an enlargement in the crack tip damage zone supported by the dispersion characteristics of the pCBp. The performance of pCBp was similar to that of CB with respect to some other properties. OC supported the filler networking which positively affected the resistance to crack initiation.  相似文献   

15.
Nanocomposite vulcunizates based on a SBR/ENR50 (50/50%wt) rubber blend containing nanoclay (5 or 10 phr) with and without carbon black (CB 20 phr) were prepared by melt blending in an internal mixer. The compound containing 35 phr carbon black (only) was prepared as a reference sample. Microstructure of nanocomposite samples was investigated by using X-ray diffraction (XRD), melt rheo-mechanical spectroscopy (RMS), and scanning electron microscopy (SEM). The XRD patterns revealed that the distance between the clay layers were increased by adding CB to the nanocomposite samples; they caused better diffusion of chains between the layers and resulted in an intercalated structure. The RMS results also indicated the formation of the filler-filler networks. SEM images of fracture surfaces showed the presence of much roughness in the samples containing both nanoclay and CB compared to the other samples. The results obtained from application of the Flory–Rhener equation showed a high crosslink density for the sample with 10 phr nanoclay and 20 phr CB. Dynamic mechanical behavior, mechanical properties, and abrasion resistance of the nanocomposites were evaluated. The results indicated that the sample containing 10 phr nanoclay and 20 phr CB had an increased dynamic elastic modulus, reduced maximum loss factor (tanδ)max,, and an improved tensile strength and abrasion resistance compared to the reference sample. Also, this sample showed the lowest maximum loss factor, at 50–60°C, so it can be a candidate for tire-tread application.  相似文献   

16.
In-situ grafting of natural rubber (NR) onto the carbon black (CB) surface by a solid-state method was used to obtain grafted carbon black (GCB). The morphology of the original CB and GCB particles was observed by AFM and TEM. The original CB particles fused together and occurred as large dendritic agglomerates while the GCB particles occurred as small aggregates about 150 nm in diameter. The dispersion and dispersion stability of CB and GCB in toluene and cyclohexene were studied by zeta potential and a spectrophotometer. The results showed that the grafting procedure can improve both dispersion and dispersion stability of CB particles. The dispersion in NR was studied by DMA and observed by SEM. It was shown that GCB has better dispersion than CB in a NR matrix. As expected a weakened filler-filler interaction and enhanced filler-polymer interaction occurred after grafting modification.  相似文献   

17.
A novel method was employed to modify the surface of carbon black (CB) by an organic small molecule in a Haake Rheomix mixer. The modified carbon black (MCB) was dispersed uniformly in poly(lactic acid; PLA). The crystallization behaviors of PLA, PLA/CB and PLA/MCB composites were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and polarizing optical microscopy. It is found that the addition of CB or MCB can influence the crystallization behavior of PLA. PLA/MCB has a faster crystallization rate and higher crystallization peak temperature than PLA/CB. For non-isothermal studies, Jeziorny and Mo equations were employed. The Mo equation can well describe the non-isothermal crystallization of the three samples. For PLA/CB and PLA/MCB composites containing 3wt% fillers, the nucleating activity for CB is about 0.32, and about 0.16 for MCB. All these results show that MCB is an effective nucleating agent. PLA/MCB has a higher nucleation rate than PLA/CB because of the finer dispersed particles size and improved interaction between MCB and PLA.  相似文献   

18.
Microwave heating technology has numerous advantages compared with the traditional heating methods and has been widely used to process materials. However, most thermoplastics do not possess a sufficiently high dielectric property to be heated by microwaves. In this study, carbon black (CB) was utilized as the microwave absorber to improve the microwave heatability of isotactic polypropylene (iPP). Effects of CB contents on the microwave heatability of iPP/CB composites were studied. The temperature of iPP/CB composites with relatively low CB content (5% and 10%) increased slowly and tended to remain unchanged after 120 s of microwave exposure. In contrast, iPP/CB composites with relatively high CB content (15% and 20%) presented a much faster heating rate and the temperature of the sample kept increasing with the prolongation of exposure time. On the basis of the fact that iPP/CB composites with different CB contents have different microwave heatability, a novel oriented structure, in which the core layer has relatively high orientation and the surface layer has relatively low orientation, was prepared by selective microwave heating. Two-dimensional wide angle X-ray diffraction (2D-WAXD) analysis indicates that the orientation parameter calculated by the (040) plane of the surface layer (0.45) was lower than that of the core layer (0.83). The novel oriented structure is different from the common skin-core structure formed in the samples of semicrystalline polymers by traditional polymer processing methods, in which orientation of the skin layer is higher than that of the core layer. The novel oriented structure has not been reported before to our knowledge and its formation mechanism is also discussed in this paper.  相似文献   

19.
脱硫灰是半干法脱硫的主要副产品,其利用难度大且成本高,导致大量脱硫灰以直接堆放和填埋的方式处理,不但造成环境污染,而且浪费潜在资源。炭黑(8 000 元·t-1)与白炭黑(6 000 元·t-1)是常用的橡胶补强填料,生产工艺繁杂,消耗大量能源和资源,导致成本较高。面对上述问题,如何利用脱硫灰开发一种价格低廉的无机橡胶补强填料,既是固体废弃物高附加值利用的重要途径之一,也是橡胶企业大幅降低填料成本提高经济效益的重要途径之一。由于脱硫灰属于无机材料,橡胶属于有机材料,为了更好的降低脱硫灰界面与橡胶界面(无机界面/有机界面)的不相容性,需要对脱硫灰进行化学改性处理,以提高脱硫灰代替部分炭黑制备橡胶的力学性能。该研究创新性以硅烷偶联剂Si69、硅烷偶联剂KH550与脱硫灰制备改性脱硫灰,然后以改性脱硫灰取代部分炭黑制备复合橡胶。根据国家与行业标准测试复合橡胶的力学性能,如拉伸强度、撕裂强度和硬度。利用扫描电子显微镜(SEM)对复合橡胶的微观形貌进行测试与分析,傅里叶变换红外光谱仪(FTIR)对改性脱硫灰的组成结构进行测试与分析,X射线衍射仪(XRD)对改性脱硫灰的矿物组成进行测试与分析,以揭示硅烷偶联剂Si69与硅烷偶联剂KH550协同对脱硫灰的改性机理,以及改性脱硫灰对复合橡胶的补强机理。结果表明:采用硅烷偶联剂KH550与硅烷偶联剂Si69协同改性脱硫灰,其取代炭黑的增强效果最佳,即复合橡胶的拉伸强度为20.36 MPa、撕裂强度为45.71 kN·m-1和邵尔A硬度为66;硅烷偶联剂KH550与硅烷偶联剂Si69协同改性脱硫灰,不仅保持脱硫灰依然良好的碱性,有利于对复合橡胶起到增强效果;而且可以改善脱硫灰的表面特性与结构,提高改性脱硫灰与丁苯橡胶的无机界面/有机界面相容性。  相似文献   

20.
For styrene-butadiene rubber (SBR) compounds filled with the same volume fraction of carbon black (CB), precipitated silica and carbon–silica dual phase filler (CSDPF), filler-rubber interactions were investigated thru bound rubber content (BRC) of the compounds and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the BRC of the compound was highly related to the amount of surface area for interaction between filler and rubber, while the solid-state 1H low-field NMR spectroscopy was an effective method to evaluate the intensity of filler-rubber interaction. The silica-filled compound showed the highest BRC, whereas the CB-filled compound had the strongest filler-rubber interfacial interaction, verified by NMR transverse relaxation. The strain sweep measurements of the compounds were conducted thru a rubber process analyzer; the results showed that the CSDPF-filled compound presented the lowest Payne effect, which is mainly related to the weakened filler network structure in polymer matrix. The temperature sweep measurement, tested by dynamic mechanical thermal analysis, indicated that the glass transition temperature did not change when SBR was filled with different fillers, whereas the storage modulus in rubbery state and the tanδ peak height were greatly affected by the filler network structure of composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号