首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylonitrile nascent fibers, as spun into the coagulation bath, were prepared by solution polymerization and wet-spinning, and a dimethyl sulphoxide (DMSO)/H 2 O coagulation bath system was adopted. The effect of coagulation bath DMSO concentration on the structure and properties of the nascent fibers was studied in detail, and the diffusion coefficients of DMSO and H2O for different bath DMSO concentrations were calculated by Crank's equation to explain the structural changes of the nascent fibers, including cross-section, core/shell structure, and surface morphology. The surface morphology of nascent fibers was observed by field emission scanning electron microscopy (FESEM). The results showed that as the coagulation bath DMSO concentration increased, the diffusion coefficients gradually decreased. More circular cross-section, less core/shell structure, higher degree of crystallinity, larger crystal size, larger bulk density, and higher sound velocity of the nascent fibers were obtained when thecoagulation bath DMSO concentration was 70 wt% compared to lower or higher bath DMSO concentration. Moreover, compared with the nascent fibers spun in other bath DMSO concentrations, smoother surfaces of the nascent fibers were obtained at the bath DMSO concentration of 70 wt%.  相似文献   

2.
Excellent poly(acrylonitrile-co-itaconic acid) (99/1) (PAI) nascent fibers, which have an important role in preparing high-quality precursors for carbon fibers, were prepared by a dry-jet wet spinning process. Their structures were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and an ultrasound solvent etching method, as well their properties being determined by a strength and extension meter and a fineness meter, both designed specifically for fibers. When a high drawing ratio, over 300%, was applied to the fibers in the dry-jet wet spinning coagulation bath, the molecular chains were easy to orient and regularly arrange, resulting in the relative crystallinity, crystal size and amorphous orientation degree of the nascent fibers being improved. The fibrils with large diameter were formed, increasing the bulk density with the overall porosity and pore numbers decreasing. Therefore, the nascent fibers had smaller diameters, higher strength, higher rupture elongation and smaller coefficients of variation. The optimum high performance PAI precursor fibers, with 0.59dtex in titer, 7.51cN/dtex in tensile strength, 7.9% in rupture elongation and the final carbon fiber with 5.54GPa in tensile strength, were obtained through a post-spinning treatment in which they were subjected to a high coagulation bath draw ratio and carbonization.  相似文献   

3.
Ultrafine poly(m‐phenylene isophthalamide) (PMIA) fibers from PMIA solution in an ionic liquid via dry‐jet‐wet electrospinning technology are described. The morphology of the fibers with and without treatment in a coagulation water bath in the dry‐jet‐wet‐electrosinning process was observed by scanning electrical microscopy (SEM) and a high resolution optical microscope. The crystal structure of the fibers was analyzed by wide angle X‐ray diffraction (WAXD). The differences of morphologies and properties between the ultrafine fibers obtained by the electrospinning process and fibers from conventional wet‐spinning technology are discussed. The thermal properties of the ultrafine PMIA fibers were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).  相似文献   

4.
The research described in this article was primarily concerned with the preferential orientations of crystal planes along the radial direction normal to the fiber axis, using fibers of poly-p-phenylenebenzobisoxasole as an example. The focus is placed on the formation of the preferential orientation during the dry-jet wet spinning fiber production process for rigid-rod polymers in which, after coagulation, the fibers are washed and dried at low temperatures. It is suggested that the formation of the radial or random preferential orientation was determined in the coagulation and washing processes, based on an analysis of micro-focus X-ray diffraction intensities in a synchrotron radiation facility.  相似文献   

5.
周丰茂  孙东科  朱鸣芳 《物理学报》2010,59(5):3394-3401
本文建立了一个模拟在弥散相液滴的扩散长大、碰撞凝并和Ostwald熟化等因素的作用下偏晶合金液-液相分离过程的二维格子玻尔兹曼方法 (lattice Boltzmann method, LBM) 模型.该模型结合了Shan-Chen的两相流模型和Qin的介观粒子相互作用势模型的优点,并在LB演化方程中引入了反映相变的源项.应用该模型模拟研究了偏晶合金液-液相分离过程中单液滴的生长、两液滴的合并和多液滴的生长规律.结果表明在两液相区中第二相单个液滴的生长是一个通过扩散从非平衡态到平衡态过渡的过程.两液滴合并 关键词: 偏晶合金 液-液相分离 格子玻尔兹曼方法  相似文献   

6.
The jet swell effect in the wet spinning of polyacrylonitrile (PAN) fiber was studied by optical microscopy and the jet swell ratio was obtained through directly measuring the diameter of the freely extruded fibers. For reflecting the actual drawing situation of the fibers in the coagulation process, the jet stretches were then corrected from the apparent values to the true values, and their effect on the cross-sectional morphology, internal structure, and orientation of the wet-spun PAN fibers was studied by optical microscopy, scanning electron microscopy, and X-ray diffraction, respectively. The results showed that jet stretch plays an important role in eliminating the adverse effects caused by the jet swell effect and affects the fiber structure; PAN fibers of uniform denier, dense and homogenous structure, and high orientation can only be obtained at a suitable jet stretch.  相似文献   

7.
Poly(vinylidene fluoride) (PVDF) membranes were prepared by the immersion precipitation method. Effects of the maturation time of dopes on the morphology and crystallization of the prepared membranes were investigated. The analysis showed that the maturation time played an important role in determining the morphology of the prepared membranes. For the dope prepared in the initial day, liquid–liquid demixing preceded solid–liquid demixing in the process of the membrane formation. The morphology of the cross section of the prepared membrane (M1) was finger-like structures with a sponge substrate beneath the porous skin. During the maturation, the dopes underwent a microscopic phase separation and the PVDF crystallized, which resulted in the existence of micro-liquid phases and micro-solid phase crystalline areas in the dopes. In the process of the membrane formation, liquid–liquid demixing took place by nucleation and growth of droplets of the polymer rich phase in the micro-liquid phase. The micro-solid phase crystallites were connected together by the polymer chains, and formed a three-dimensional network gelation morphology. The crystal structure of M1 was mainly β crystals. With increasing maturation time of the dopes, the proportion of β decreased crystals, but that of α crystals increased for the prepared membranes.  相似文献   

8.
Incorporating surface tension, a mathematical modeling system was established to simulate the melt spinning process of a noncircular fiber. A Newtonian fluid was assumed and an isothermal spinning process was considered. Finite element method was adopted to solve the system. The predicted shape of as‐spun fiber was compared with experiments. It was found that surface tension was a key factor in the spinning process of noncircular fibers, which would greatly change the fiber cross‐sectional shape. Simulation would fail to predict the noncircular fiber shape accurately if surface tension was ignored. The fiber shape change caused by the velocity rearrangement only occurs near the spinneret, but surface tension would keep changing the curvature of the fiber surface along the spinline. Die swell of fiber extrudate during the spinning process was also investigated and it was found that die swelling of fiber extrudate near the spinneret was greatly suppressed by the stretch imposed by a take‐up device, when compared with the free extrusion process.  相似文献   

9.
Polyvinylidene fluoride (PVDF) flat-sheet membranes were prepared via a non-solvent-induced phase separation (NIPS) method at 60°C using a hydrophilic surfactant OP-10 (octylphenol polyoxyethylene ether) solely (Blank) or with a second additive [H2O or lithium chloride (LiCl)] as pore-forming agents. The influence of OP-10 concentration on the surface tension, viscosity, and precipitation rate of PVDF/(H2O, LiCl, or Blank) systems were investigated, and the ultrafiltration and mechanical properties of the resultant membranes were measured. It was found that an increased demixing rate during the coagulation process was the reason for the change in membrane morphology and properties. An obviously improved flux and slightly decreased mechanical properties and rejection were found in membranes prepared using a high concentration of OP-10 and the second component as additives. SEM pictures revealed an increased porous structure on the resultant membrane surface. A hypothesis was proposed to explain these phenomena; the reoriented surfactant molecules at the interface facilitated the water diffusion channels, which finally became the porous structure on the membrane surface. The weakened mechanical properties were due to the macrovoid structure in its membrane cross-section, which developed from the micelle structure in the casting solution. This hypothesis was further confirmed in a PVDF/OP-10/polyethylene glycol (PEG) system. A consistent conclusion was obtained.  相似文献   

10.
Polypropylene (PP)/polyester (PES)–blend fibers were prepared by extruder melt spinning. The polymer blend consisted of PP and a “master batch” (MB) based on polytrimethylene terephthalate (PTT) or polyethylene terephthalate (PET), binary PTT/PET or PP/PTT blends, and also on a ternary PP/(PTT/PET) blend. The phase structure of PP/PES–blend fibers was examined. PES microfibers showed separation from the PP matrix in blend fibers. The impact of MB composition and rheological characteristics on phase structure parameters indicate a significant contribution of the PTT in the binary MB on the length of dispersed PES microfibers in the PP matrix. However, the blends of PP and ternary MB (PP/PTT/PET) have a lower diameter and length of the PES microfibers. The presence of PTT/PET (PES) enhances the structural and mechanical properties of the blend PP/PES fibers. In addition, PTT increases the tensile strength of the PP/PES–blend fibers if a binary MB is used, while the fiber nonuniformity is reduced in the presence of a ternary MB.  相似文献   

11.
马永利 《中国物理快报》2004,21(12):2355-2358
In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.  相似文献   

12.
基于Ginzburg-Landau理论采用连续相场法模拟了Fe-15%Cu-3%Mn-x Al(质量分数x=1%, 3%, 5%)合金在873 K等温时效时纳米富Cu析出相沉淀机制及Al含量对富Cu相析出的阻碍效应.通过计算成分场变量和结构序参数,研究了富Cu析出相的形貌、颗粒密度、平均颗粒半径、生长和粗化动力学.研究结果表明:在时效早期阶段,纳米富Cu相通过失稳分解机制析出,由于原子扩散速率存在差异,从而形成以富Cu相为核心的核壳结构.随着时效时间延长,富Cu相析出物结构由体心立方转变为面心立方.其中Al和Mn原子在富Cu核外偏析形成Al/Mn簇,可以将其视为阻碍富Cu析出相形成的缓冲层;在沉淀过程中,随着Al含量的增大, Al/Mn金属间相促进了缓冲层的生长,阻碍富Cu析出相的生长和粗化.  相似文献   

13.
The coagulation phase separation of solutions of novel copoly(phthalazinone amide)s is studied by the cloudpoint titration method. The effects of some factors on the coagulation value (V 1) and critical concentration (C c ) are investigated. It is shown that water is a strong coagulant, having a low coagulation value V 1 and that the V 1 increases with the increase of coagulant concentration and temperature. In addition, an increased percentage of LiCl in the coagulant and of phthalazinone moiety in the polymer main chain can slow down the phase separation speed.  相似文献   

14.
We investigate the fluid—fluid demixing transitions in the case of adsorption of so-called symmetric binary mixtures in slit-like pores at temperatures higher than the bulk gas—liquid critical temperature. The aim of the study is to determine how the demixing of such mixtures in the pores depends on the bulk phase composition and on the parameters characterizing the pore. The calculations have been carried out by means of a density functional theory. In the case of an equimolar bulk mixture, the demixing transition inside the pore occurs only when the adsorption potentials of both species are identical. The occurrence of this transition is manifested by a cusp in the adsorption isotherm. For nonequimolar bulk phase compositions, the transition can also take place if the adsorption energies of both components are different. However, the difference in the adsorption energies should be small enough, otherwise a continuous demixing takes place. For non-equimolar compositions two branches of the grand canonical potential intersect, whereas for equimolar bulk composition they meet tangentially. We have determined phase behaviour for several model systems.  相似文献   

15.
The metastable liquid phase separation and rapid solidification behaviors of Co_(40) Fe_(40) Cu_(20) alloy were investigated by using differential thermal analysis(DTA) in combination with glass fluxing and electromagnetic levitation(EML) techniques. The critical liquid phase separation undercooling for this alloy was determined by DTA to be 174 K. Macrosegregation morphologies are formed in the bulk samples processed by both DTA and EML. It is revealed that undercooling level, cooling rate, convection, and surface tension difference between the two separated phases play a dominant role in the coalescence and segregation of the separated phases. The growth velocity of the(Fe,Co) dendrite has been measured as a function of undercooling up to 275 K. The temperature rise resulting from recalescence increases linearly with the increase of undercooling because of the enhancement of recalescence. The slope change of the recalescence temperature rise versus undercooling at the critical undercooling also implies the occurrence of liquid demixing.  相似文献   

16.
We present a unified model of shear-induced demixing and "mechanical" shear banding instabilities in polymeric and surfactant solutions, by combining a simple flow instability with a two-fluid approach to concentration fluctuations. Within this model, we calculate the "spinodal" limit of stability of initially homogeneous shear states to demixing/banding, and predict the selected length and time scales at which inhomogeneity first emerges after a shear start-up "quench" into the unstable region, finding qualitative agreement with experiment. Our analysis is the counterpart, for this driven phase transition, of the Cahn-Hilliard calculation for unsheared fluid-fluid demixing.  相似文献   

17.
We describe a phenomenon of ribbon-to-fiber transformation observed in the process of spinning of single wall carbon nanotubes dispersed in polymer solutions. In the process of spinning, a gel-like ribbon comprised of nanotube bundles bound by polymer is withdrawn from a solvent bath. We show that upon crossing the liquid-air interface, the ribbon may either retain its flat shape or fold into a compact hairlike fiber. The ribbon-to-fiber transformation is caused by the capillary action of the liquid meniscus embracing the ribbon. Only sufficiently stiff ribbons can withhold the capillary compression. The critical conditions of folding, as well as the number of folds in the contractive ribbon, depend on the ribbon width, its flexural rigidity, and the solvent surface tension. We show that the ribbon rigidity can be efficiently modulated by varying the solvent composition, allowing us to control the pore structure of carbon-nanotube fibers.  相似文献   

18.
The dynamics of phase separation in quenched thermodynamically unstable systems is studied. The scaling law exhibited in the late stage of the ordering process is investigated by the interface model. In the kinetics of the order-disorder transition the motion of random interfaces is shown to be responsible for the scaling law. The scaling form of the scattering function is obtained with particular attention to the fluctuating thermal noises. A droplet picture is used to discuss spinodal decomposition of off-critically quenched binary fluids. The sealing function is calculated explicitly in the region where the Brownian coagulation is most dominant for the phase separation. It is shown that the thermal noises are relevant to the scaling law in the ordering process driven by the Brownian coagulation whereas they are negligible in the kinetics of order-disorder transition.  相似文献   

19.
The nonwoven fibrous materials of poly-3-hydroxybutyrate obtained by electrospinning were studied. The average diameter of the fibers was correlated with the polymer concentration in solution. As the concentration of poly-3-hydroxybutyrate in the spinning solution increased from 5 to 9 wt %, its crystallinity in the fibrous material increased by 4–5%, and the melting temperature changed insignificantly. A paramagnetic resonance study showed that the density of the amorphous phase of the fibers increased with the polymer concentration in solution. The resistance of the fibrous materials to aggressive environmental factors also increased.  相似文献   

20.
Formic acid (FA) solutions prepared with various concentrations of polyamide 66 (PA 66) and monosodium glutamate (MSG) were evaluated in terms of properties, such as density, viscosity, and cloud point. The influence on density was insignificant, whereas the viscosity was strongly affected by the amount of PA 66 and MSG additive. The solutions were further evaluated by casting them in a flat film form and determining the demixing time in a humid atmosphere. The considered cases at lower polymer concentrations at various MSG amounts, indicated that the demixing time increased with increase in polymer concentration. The time for demixing, however, decreased for a given higher amount of polymer when the amount of additive was increased in the dope solution. Membranes were prepared at various coagulant bath temperatures. The tensile strength and degree of adsorption (DOA) of these membranes were found. The tensile strength was higher when the membranes were prepared at higher temperature. The DOA, on the other hand, was higher for the membranes formed at lower temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号