首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of fluorinated poly(amide imide)s (PAIs) were prepared by polycondensation of diamine amic acid (DAA) with isophthaloyl, terephthaloyl, or trimellitic anhydride chloride in dimethylformamide, and their subsequent thermal cycloimidization. DAAs were obtained by reacting 4, 4′ (hexafluoroisopropylidene) diphthalic anhydride (6FDA) with diamines in dimethylformamide at 0–5°C. The kinetics of thermal cycloimidization of poly(amide amic acid) (PAA) to PAIs was investigated by thermogravimetric analysis under isothermal conditions at four different temperatures, i.e. 175, 200, 225, and 260°C, for 75 min. A generalized equation to calculate the theoretical amount of weight loss upon complete imidization, i.e. Tw % = 18Nw/R Mw, was developed. In the above equation numeral 18 corresponds to the molecular weight of water, N is the number of water molecules, which are eliminated per repeat unit of PAA upon cycloimidization, w is the weight of PAA taken for TGA, and R Mw is the molecular weight of the repeat unit of PAA. The polymers were characterized by FT-IR spectra. Complete cycloimidization process is discussed in terms of monomer structure (diamines and acid chlorides), effect of imidization temperature and time, types of linkages (meta or para) present, and influence of electron withdrawing groups, such as sulfone, in the monomer structure. It was observed that cycloimidization occurred at a faster rate at the beginning, up to about 30 min, and then proceeded at a slower rate till the end of curing. The thermal and thermooxidative stabilities of PAIs were also investigated in nitrogen and oxygen atmosphere.  相似文献   

2.
New toughened poly(trimethylene terephthalate) (PTT) materials were obtained by melt blending with maleic anhydride grafted poly(ethylene-octene) (POEg). Rheological properties, mechanical properties, and morphological characteristics of PTT/POEg blends at four different compositions—95/5, 90/10, 80/20, and 70/30—were studied. The melt viscosity of the blends shows a linear decrease on increasing the POEg content. The addition of rubbery POEg to the PTT matrix increases the impact strength, while tensile properties decrease. Scanning electron microscopy (SEM) displayed a very good dispersion of POEg particles in the PTT matrix. Differential scanning colorimetry (DSC) experiments showed that for all samples the melting point was almost constant and the crystallinity did not show obvious differences. SEM results showed shear yielding of the PTT matrix was the major toughening mechanism.  相似文献   

3.
A series of poly(lactic-co-glycolic acid) (PLGA) was synthesized by bulk ring-opening copolymerization with different ratios of L-lactic acid (L-LA) to glycolic acid (GA); stannous octoate [Sn(Oct)2] was used as catalyst. The structures were characterized by FT-IR. The crystallinity and the glass-transition temperature (Tg) were studied by differential scanning calorimeter (DSC). Tg decreased with the increase of GA and the rate of degradation and degree of hydrophilicity increased with the increased content of GA.  相似文献   

4.
各种烷氧基取代聚对苯乙炔的合成和发光性能研究   总被引:3,自引:1,他引:2       下载免费PDF全文
利用脱氯缩合聚合法合成了聚(2-甲氧基-5-丁氧基)对苯乙炔(PMOBOPV),聚(2-甲氧基-5-辛氧基)对苯乙炔(PMOCOPV)和聚(2-丁氧基-5-丁氧基)对苯乙炔(PDBOPV),聚(2-辛氧基-5-辛氧基)对苯乙炔(PD-COPV)4种发光材料。对反应体系的浓度,酸碱度,反应温度及时间等工艺条件和路线进行了细致的研究。结果表明:反应物的纯度,含量对合成产物的产率和性能有较大的影响;碱性是影响脱氯缩合反应的关键因素,而反应温度和时间对缩合反应影响则相对较小,在一定温度下当反应时间达到一定阶段后其转化率基本不变,对合成材料的化学结构,物理性能和发光特性进行了表征和检测。结果显示:非对称烷氧基取代PPV具有良好的溶解性,成膜性和稳定性;而对称性烷氧基取代PPV的溶解性和成膜性相对较差。以PMOBOPV为发光材料,采用旋涂工艺制作出单层和双层发光器件,并对器件的电致和光致发光性能进行了研究。  相似文献   

5.
Graphene (GN)-filled polylactic acid (PLA) nanocomposites were prepared through a solution blending method with GN weight percent ranging from 0.5 to 2?wt%. Rheological, melting and crystallization behaviors of the prepared PLA/GN nanocomposites were investigated by means of dynamic rheological measurements and differential scanning calorimetry (DSC). The shear viscosities of the PLA/GN nanocomposites decreased with increasing GN content, which was remarkably different from previous reports on the modifications using traditional nanofillers (e.g., clay, carbon nanotubes, etc.). The nonisothermal melt crystallization kinetic analysis suggested that GN served as a nucleating agent and could considerably promote the PLA’s crystallization through heterogeneous nucleation. Our findings suggested that at relatively low cooling rates (??≤?10?°C/min) even a small amount of GN promoted the nucleation and considerably increased the crystallization rate. However, the crystallinity began to decrease at higher cooling rates (e.g., ??≥?20?°C/min), especially when the GN content was high (e.g., 2?wt%), possibly owing to the GN aggregation effect considering PLA is a slowly crystallizing polymer.  相似文献   

6.
Addition of a commercial available multiamide compound (N,N′,N′′-tricyclohexyl-1,3,5- benzenetricarboxylamide, defined here as TMC) into ecofriendly poly(lactic acid) (PLA) can accelerate the crystallization rate of the material remarkably and broaden its applications. In this paper, the nonisothermal crystallization behavior of biodegradable PLA nucleated by 0.3 wt.% of TMC was investigated by differential scanning calorimetry (DSC). The modified Avrami, Tobin, Ozawa, and Mo models were applied to describe the kinetics of the crystallization process. Various parameters of nonisothermal crystallization, such as the crystallization half-time and crystallization rate constant, reflected that TMC significantly accelerated the crystallization process. The activation energy values of the neat PLA and PLA/TMC blend, determined by the Kissinger method, increased with the addition of TMC. The study should be helpful for understanding the relationship between processing and properties of this material.  相似文献   

7.
The effect of the metallic salts of phenylmalonic acid (PMA), as novel nucleating agents, on the melt and crystallization behaviors, spherulitic morphologies, and crystal structures of poly(L-lactide) (PLLA) was studied by means of differential scanning calorimetry, polarized light microscopy, and wide angle X-ray diffraction (WAXD). The results showed that calcium and cadmium salts of PMA are good nucleating agents for PLLA. Lithium, sodium, magnesium, strontium, and zinc salts of PMA are moderate nucleating agents, barium and aluminum salts of PMA are weak nucleating agents, while potassium phenylmalonate is not a nucleating agent for PLLA. The presence of nucleating agents significantly increased the number and decreased the size of the spherulites, but the crystal structures of the nucleated PLLA samples were not changed.  相似文献   

8.
9.
三螺旋DNA分子poly(dT)·poly(dA)·poly(dT)的构型和振动谱   总被引:4,自引:0,他引:4  
我们计算了poly(dT)·poly(dA)·poly(dT)的Howard模型的原子笛卡尔坐标,并利用晶格动力学方法对模型进行了简正分析。结果发现其0 P 0对称振动模式位于804cm-1,这和810cm-1附近没有拉曼和红外谱线的实验结果不符。在800~1000cm-1的范围内只有四个振动模式,明显少于拉曼和红外光谱在该范围内的谱线数目。所以我们认为Howard模型需要进一步地完善和修正,poly(dT)·poly(dA)·poly(dT)必须具有三条不完全一致的脊骨  相似文献   

10.
The kinetics of isothermal melt crystallization of poly(trimethylene terephthalate) (PTT)/poly(butylene terephthalate) (PBT) blends were investigated using differential scanning calorimetry (DSC) over the crystallization temperature range of 184–192°C. Analysis of the data was carried out based on the Avrami equation. The values of the exponent found for all samples were between 2.0 and 3.0. The results indicated that the crystallization process tends to be two‐dimensional growth, which was consistent with the result of polarizing light microscopy (PLM). The activation energies were also determined by the Arrhenius equation for isothermal crystallization. The values of ΔE of PTT/PBT blends were greater than those for PTT and PBT. Lastly, using values of transport parameters common to many polymers (U*=6280 J/mol, T =T g – 30), together with experimentally determined values of T m 0 and T g, the nucleation parameter, K g, for PTT, PBT, and PTT/PBT blends was estimated based on the Lauritzen–Hoffman theory.  相似文献   

11.
Investigations concerning the interactions between the polymeric pair constituted of poly(aspartic acid) (PAS) as a proton-donating polycarboxilic acid and poly(ethylene glycol) (PEG) as a proton-accepting compound are continued from previous studies. The complexation between PAS and PEG has potential use as a matrix for encapsulation of bioactive substances with potential biomedical applications. The interactions that occurred were monitored in dilute solutions by determining the particle size distribution and the zeta potential (ZP) through laser light scattering method; data associated with oscillatory rheology was used as a complementary analysis. The influence of the ratio between the components and the temperature conditions during the complexation process brought additional data concerning the intermolecular links formed through hydrogen bonds.  相似文献   

12.
In this study the wetting characteristics of untreated and plasma-treated polyurethane thin films were investigated. The degree of wettability was investigated by measuring the contact angle formed between a liquid drop and the solid surface. The work of adhesion, interfacial free energy, spreading coefficient, and Girifalco–Good's interaction parameter changed significantly for plasma-treated polyurethane films. Both complete and partial wetting were analyzed from the spreading coefficient of liquid drops on the solid substrate.  相似文献   

13.
The origin of the multiple melting peaks in two linear polyesters, poly(ethylene succinate) (PES) and poly(butylene succinate) (PBS), of isothermally crystallized samples was investigated by differential scanning calorimetry (DSC) at atmospheric pressure and high-pressure differential thermal analysis (HP-DTA) at elevated pressures. In PES, the DSC melting curves showed three endothermic peaks at slow heating rates, which decreased to two with increasing heating rates. The HP-DTA curves showed that the area (qualitative) and peak height of the high-temperature peak decreased with increasing pressure and merged with the low-temperature peak at pressures above 450 MPa. This behavior supported the melting, recrystallization, and remelting model for the observed multiple melting endotherms. In PBS, the DSC melting curves were similar to those seen in PES. The HP-DTA curves were also similar to PES up to 400 MPa, but above this pressure the area and the peak height of the high-temperature peak and the temperature difference between the high- and low-temperature peaks remained unchanged. This observation suggested that the two peaks in PBS were due to the melting of two populations of crystals with different lamellar thickness originally present in the sample. The multiple melting behavior in isothermally crystallized PBS is proposed to incorporate both the melting of two populations of crystals and melting, recrystallization, and remelting.  相似文献   

14.
ABSTRACT

The analysis of plastics and fibers is of importance to forensic scientists, especially in the investigation of trace evidence. In this study, we use Fourier transform infrared microscope and confocal Raman spectroscope to investigate two kinds of polymers: poly(butylenes adipate-co-terephthalate) and poly(ethylene terephthalate), which are very similar in structure and cannot be discriminated easily with other instruments. Infrared and Raman spectra were tentatively interpreted. The indicative peaks (937 cm?1, 1121 cm?1 in Infrared spectra; 996 cm?1, 1396 cm?1 in Raman spectra) to distinguish the two polymers were also summarized. The data in this study can help forensic scientists identify these two polymers accurately and avoid wrong certificate of authenticity. The data also offer the producer and researchers an effective and fast method to characterize and identify the poly(butylenes adipate-co-terephthalate).  相似文献   

15.
Abstract

Zinc hydroxystannate (ZHS) coated dendritic-fibrillar barium carbonate (ZHS/BaCO3-F) was obtained by a simple ultrasonic assisted method at room temperature without any guide reagent; the flame retardant soft poly (vinyl chloride) (S-PVC) treated with ZHS/BaCO3-F was prepared by melt blending and studied by the limiting oxygen index (LOI), univeral tensile testing machine, thermogravimetric analyzer-Fourier transform infrared spectroscopy (TGA/FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that ZHS/BaCO3-F had a good dispersion in the PVC matrix, increased the LOI value and reinforced the S-PVC. The ZHS/BaCO3-F played its role during the first degradation stage of S-PVC; the integrated effects of the earlier dehydrochlorination of ZHS on PVC, the reaction of ZHS/BaCO3-F and HCl, and the thermal degradation of ZHS resulted in the production of H2O, CO2, olefins, aryl compounds, carboxylic compounds and alcohols, and the decrease of HCl production.  相似文献   

16.
Poly(lactic acid) (PLA)/poly(ethylene-co-vinyl alcohol) (EVOH) blends were prepared via melt blending to improve the barrier properties of PLA. The phase morphologies and final properties (rheological behavior, thermal and dynamical-mechanical features, barrier properties, and mechanical behaviors) of the blends were investigated as a function of the EVOH content. The results indicated that hydroxyl groups of EVOH promoted the degradation of PLA, and thus affected the viscosities and morphologies of the resulting blends. The intrinsic viscosities of PLA in the blends decreased with the content of EVOH. The PLA and EVOH presented typical phase-separated morphologies, with a relatively small domain size of the EVOH phase. The EVOH enhanced the cold-crystallization behavior of PLA. The barrier properties to water vapor and oxygen increased linearly with increasing EVOH content.  相似文献   

17.
Poly(butylene succinate-co-adipate) (PBSA)/poly (trimethylene carbonate) (PTMC) blend samples with different weight ratios were prepared by solution blending. The morphologies after isothermal crystallization and in the melt were observed by optical microscopy (OM). Differential scanning calorimetry (DSC) was used to characterize the isothermal crystallization kinetics and melting behaviors. According to the OM image before and after melting, it was found that the blends formed heterogenous morphologies. When the PTMC content was low (20%), PBSA formed the continuous phase, while when the PTMC contents was high (40%), PBSA formed the dispersed phase. The glass transition temperatures (Tg) of the blends were determined by DSC and the differences of the Tg values were smaller than the difference between those of pure PBSA and PTMC. In addition, the equilibrium melting points were depressed in the blends. According to these results, the PBSA/PTMC blends were determined as being partially miscible blends. The crystallization kinetics was investigated according to the Avrami equation. It was found that the incorporation of PTMC did not change the crystallization mechanism of PBSA. However, the crystallization rate decreased with the increase of PTMC contents. The change of crystallization kinetics is related with the existences of amorphous PTMC, the partial miscibility between PLLA and PTMC, and the changes of phase structures.  相似文献   

18.
The influence of silica nanoparticles on the tensile properties of poly(ethylene terephthalate)(PET) fibers was investigated. The results showed that mechanical properties of PET fibers were improved through nano‐silica incorporation. Two maxima of the modulus‐strain curves of PET/silica nanocomposites (PETS) fibers are always higher than those of pure PET (PET0) fibers. The results of microstructure investigations suggested that the amorphous orientation factor of PETS fibers is higher than that of PET0 fibers. It is suggested that the increase of amorphous orientation factor contributed to the improvement of tensile properties of PET fibers. Considering the difference in modulus‐strain curves of PET0 and PETS fibers, it is believed that the addition of nanoparticles not only improved the amorphous orientation factor but also changed the load units of PET fibers when strained, which also resulted in the improvement of tensile properties.  相似文献   

19.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

20.
Poly(ether urethane)s containing different hard segments were investigated by viscometry, fluorescence spectra, polarizing optical microscopy, and scanning electron microscopy. The polarity dependence of the vibrational structure of the pyrene emission spectrum indicated the formation of aggregates at concentrations that are significantly below the critical concentrations that define the separation of dilute‐semidilute domains. Unlike the sample with 4,4'‐methylene diphenylene diisocyanate, the sample with 2,4‐tolylene diisocyanate in hard segments gives a fluorescence spectra in which the pyrene excimer appears. Supermolecular structures associated with the form of spherulites or of spherical micelles were detected by scanning electron microscopy. The results are discussed in correlation with viscometric data and optical microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号