首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The association of poly (diallyldimethylammonium) chloride (PDDAC) hydrophobically modified with octyl, decyl, and dodecyl chlorides, with 4-n-alkylbenzene sulfonates, was studied in aqueous solution by ultrafiltration. Experimental data agree well with the Hill's equation for the association process. The association degree increases with the size of the sulfonate anion and decreases as the polyelectrolyte side chains length increases. This kind of polyelectrolyte is able to form hydrophobic microdomains lowering the availability of association sites due to a hypercoiling process. The association process was, in all cases, cooperative, having a maximum with the octyl derivative. The association degrees were significantly higher than those found with PDDAC itself. The standard free-energy contribution to the association process was between ?19 and ?20 kJ/mol of benzene sulfonate. These values are comparable with those recently found for a family of hydrophobic cationic polyelectrolytes at the water/chloroform interface. Therefore, in terms of the association process, it does not matter if the polyelectrolyte is adsorbed at a liquid/liquid interface or if it is soluble in a pure phase. The contribution of the methylene groups was very small, ranging from ?0.20 to ?0.50 kJ/mol. This reveals that the main interaction governing the association is the aromatic ring–ammonium group interaction.  相似文献   

2.
Reactions between CH3NHNH2 and OOH radical were studied using computational methods. The activation energies (Ea) and Gibbs free energies of activation (ΔG#) were calculated at the MP2 and B3LYP levels of theory. The calculated activation energies of the hydrogen abstraction reactions were less than 100 kJ/mol and those for the substitution reactions were about 150–250 kJ/mol. The calculated activation energies for the intra-molecular hydrogen transfer reactions in CH3NHNH, CH2NNH2 and CH3NN molecules were 210–250 kJ/mol. Catalytic effect of the water molecule on the intra-molecular hydrogen transfer reactions was studied. It was found that the water molecule decreases the activation energies by about 70–100 kJ/mol. Rate constants of the reactions were calculated using transition state theory in the temperature range of 298–2000 K. Consecutive hydrogen abstraction reactions from CH3NHNH2 led to the formation of CH2NN, which was a very stable molecule.  相似文献   

3.
The association of phenols, such as p-cresol, tribromophenol, and trichlorophenol, with several amphipathic poly (n-alkylmethyldiallylammonium) chlorides in aqueous solution was studied by ultrafiltration. The n-alkyl residues were octyl, decyl, and dodecyl and the binding degrees were significantly higher than those found with the hydrophilic poly (diallyldimethylammonium) chloride. The results agreed well with the Satake and Yang's treatment and Hill's empirical equation for the association process, thereby revealing, in both cases, an increasing cooperative effect as the polyelectrolyte side chain increased in length for the same phenol, and when the hydrophobic nature of the phenol increased for the same kind of polyelectrolyte. From the phenomenological association constants, the estimated molar standard free energies of association ranged from ?19 kJmol?1, for the more hydrophilic phenoxide–polyelectrolyte pair, to ?28 kJmol?1 for the more hydrophobic pairs. The main result is that the amphipathic nature of these polyelectrolytes makes them efficient systems to trap anionic contaminants, better than hydrophilic flocculants.  相似文献   

4.
Studies performed on strong polyelectrolytes and on a weak polyelectrolyte, sodium poly(acrylate), show that their stability in presence of multivalent cations depends on the chemical nature of the charged side groups of the polymer. For sulfonate groups (SO3 -) or sulfate groups (OSO3 -) phase separation generally occurs in presence of inorganic cations of valency 3 (as La3+) or larger and a resolubilization takes place at high salt concentration. The interactions of the polyelectrolyte with multivalent cations are of electrostatic origin and the phase diagrams are weakly dependent on the chemical nature of the polymer backbone and on the specificity of the counterions. For acrylate groups, (COO-), the phase separation was observed with inorganic cations of valency 2 (as Ca2+) or larger without resolubilization at high salt concentration. The phase separation is due to a chemical association between cations and acrylate groups of two neighboring monomers of the same chain. This chemical association creates a hydrophobic complex by dehydrating both monomer and cation. With organic trivalent cation, as spermidine +H3N(CH2)4NH2 +(CH2)3NH3 +, where no chemical association occurs with the charged side groups COO- or SO3 - of the polyelectrolyte, similar phase diagrams were observed whatever was the polyelectrolyte with a resolubilization at high trivalent cation concentration. Received 3 March 1999 and Received in final form 2 September 1999  相似文献   

5.
Structures of complexes formed in aqueous solutions by some anionic polyelectrolytes (double and single stranded (ds and ss) DNA, poly(vinyl sulfonate) (PVS), and poly(styrene sulfonate) (PSS)) with a cationic surfactant system consisting of cetyltrimethylammonium bromide (CTAB) and sodium 3-hydroxy-2-naphthoate (SHN) have been determined using small angle X-ray diffraction. All complexes are found to have a two-dimensional (2-D) hexagonal structure at low SHN concentrations. Analysis of the diffraction data shows that the ds DNA—CTAB complex has an intercalated structure, with each DNA strand surrounded by three cylindrical micelles. On increasing SHN concentration, DNA—CTAB—SHN complexes exhibit a hexagonal-to-lamellar transition, whereas PVS complexes show a hexagonal → centered rectangular → lamellar transition. PSS complexes show yet another sequence of structures. These results indicate the significant influence of the chemical nature of the polyelectrolyte on the structure of the complexes.  相似文献   

6.
The results of a study that helps understand the mechanisms of adsorption of polyelectrolytes on particles, using numerical simulation methods, specifically the one known as dissipative particle dynamics are reported here. The adsorption of cationic polyelectrolytes of two different polymerisation degrees interacting with two types of surfaces, one made of gold and the other of silica, is predicted and compared. We find that a more negatively charged wall does not necessarily adsorb more cationic polyelectrolytes because the electrostatic repulsion between the wall and the polyelectrolytes is stronger. Additionally, intra-chain repulsion plays an important role, because the largest polyelectrolyte chains have larger excluded volume than the shorter ones. In regard to the adsorption dependence on the polyelectrolyte polymerisation degree, we find that the excluded volume drives the adsorption throughout the intra-chain electrostatic repulsion, because the SiO2 surface is strongly negative. These results are expected to be useful for several nanotechnological applications of current interest, such as in gene therapy and in the improvement of drug delivering mechanisms.  相似文献   

7.
The pH-independent hydrolysis of bis (2,4-dinitrophenyl) carbonate in the presence of aqueous micelles of sodium dodecyl sulfate, sodium dodecylbenzene sulfonate, alkyltrimethylammonium chlorides, alkyldimethylbenzylammonium chlorides (alkyl GROUP = cetyl and dodecyl), and polyoxyethylene (9) nonylphenyl ether has been studied spectrophotometrically. Observed rate constants, kobs, decrease in the following order: alkyldimethylbenzylammonium chlorides> bulk water ≈ alkyltrimethyl- ammonium chlorides> nonionic micelles> anionic micelles. Surfactant-substrate association constants have been determined from the dependence of kobs on [surfactant]. 1H NMR study of the solubilization of a model compound, phenyl-2,4-dinitrophenyl carbonate, showed that all surfactant segments are affected by the solubilizate, and that the ester penetrates deeper in micelles of alkyldimethylbenzylammonium chlorides relative to the corresponding alkyltrimethylammonium chlorides. Micellar effects on kobs are analyzed in terms of “medium” and “electrostatic” effects. The lower microscopic polarity at the reaction site cause rate decrease, whereas electrostatic interactions of the dipolar transition state with the charged interface result in rate decrease by anionic micelles, and rate enhancement by cationic ones.  相似文献   

8.
Ultrathin self-assembled polyelectrolyte multilayer membranes   总被引:3,自引:0,他引:3  
The paper is concerned with ultrathin membranes prepared upon alternating layer-by-layer adsorption of cationic and anionic polyelectrolytes on a porous substructure. The formation of the polyelectrolyte multilayer membranes is characterised and the transport of gases, liquid mixtures and ions across the membranes is studied. In particular, the use of the membranes for alcohol/water separation under pervaporation conditions, and for the separation of mono- and divalent ions is described. It is demonstrated that upon a suitable choice of polyelectrolytes and substructures, and a careful optimisation of preparation and operation conditions, membranes can be tailored exhibiting an excellent separation capability. Received 4 September 2000  相似文献   

9.
The premicellar and micelle formation behaviors of four cationic triphenylmethane dyes, viz, Pararosaniline (RN), Crystal violet (CV), Ethyl violet (EV), and Malachite green (MG), in aqueous anionic surfactant solutions of sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium dodecyl sulfonate (SDSN) have been studied by spectral and surface tension measurements. The study was carried out within a pH range where the dyes are stable in their quinoid forms. The dyes have been found to form dye–surfactant ion pairs (DSIPs) with the surfactants, at the surfactant concentrations well below their critical micelle concentration, CMC*. The DSIPs behave like nonionic surfactants and form an air–water interfacial monolayer. The DSIPs have a lower critical micelle concentration (CMCIP), greater efficiency, and lower effectiveness than the corresponding pure surfactants. As the surfactant concentration is increased below the CMC*, the DSIPs start forming micelles of their own where the dye gets protonated and exists as a protonated dye–surfactant ion pair (PDSIP) in the ion pair micelles. As the concentration of the surfactant exceeds the CMC* of the pure surfactant, the protonation reverses gradually with the dye remaining in the micelles in solubilized form and the DSIPs in the air–water interfacial monolayer are replaced by pure surfactants. The distorted helical isomeric form (isomer B) of the dyes is favored in the PDSIPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Molecular mechanics(MM) calculations for interfacial behaviour of sodium n-butyl benzene sulfonate (NaNBBS), sodium iso-butyl benzene sulfonate (NaIBBS) and sodium tert-butyl benzene sulfonate (NaTBBS) show a significant effect of the butyl group geometry on the surface area occupied by these molecules at the air–water interface. NaNBBS, in comparison with NaIBBS and NaTBBS, shows a closer molecular packing at the interface. The simulation predicts minimum hydrotrope concentration of each hydrotrope to reach surface saturation and molecular surface area at the interface match with good accuracy. The shape, size and charge of the hydrotrope aggregates obtained by molecular dynamics simulation also match well with the results of small angle neutron scattering experiments on the same hydrotrope. The simulation shows non-regular and ellipsoidal hydrotropes aggregates with substantial charge on the surface. The aggregates are also more open structures as compared to surfactant micelles. The water accessible surface area of a NaNBBS aggregate was 25% lower in comparison to that of NaTBBS aggregate, indicating closer packing of NaNBBS molecules. The fractional charge on the NaNBBS aggregate decreases with the increase in the number of NaNBBS molecules in the aggregate indicating more counter-ion association.  相似文献   

11.
Monolayers of dioctadecyldimethylammonium bromide (DODA) at the air/water interface were used as model for charged surfaces to study the adsorption of anionic polyelectrolytes. After spreading on a pure water surface the monolayers were compressed and subsequently transferred onto a polyelectrolyte solution employing the Fromherz technique. The polyelectrolyte adsorption was monitored by recording the changes in surface pressure at constant area. For poly(styrene sulfonate) and carboxymethylcellulose the plot of the surface pressure as function of time gave curves which indicate a direct correlation between the adsorbed amount and surface pressure as well as a solely diffusion controlled process. In the case of rigid rod-like poly(p-phenylene sulfonate)s the situation is more complicated. Plotting the surface pressure as function of time results in a curve with sigmoidal shape, characterized by an induction period. The induction period can be explained by a domain formation, which can be treated like a crystallization process. Employing the Avrami expression developed for polymer crystallization, the change in the surface pressure upon adsorption of rigid rod-like poly(p-phenylene sulfonate)s can be described. Received 1st July 2000 and Received in final form 7 December 2000  相似文献   

12.
By means of electrospray ionisation mass spectrometry, it was evidenced experimentally that the ammonium cation (NH4+) reacts with the electroneutral [2.2.2]paracyclophane ligand (C24H24) to form the cationic complex [NH4(C24H24)]+. Moreover, applying quantum chemical calculations, the most probable conformation of the proven [NH4(C24H24)]+ complex was solved. In the complex [NH4(C24H24)]+ having a symmetry very close to C3, the ‘central’ cation NH4+ is coordinated by three strong bifurcated intramolecular hydrogen bonds to the corresponding six carbon atoms from the three benzene rings of [2.2.2]paracyclophane via cation–π interaction. Finally, the interaction energy, E(int), of the considered complex [NH4(C24H24)]+ was evaluated as ?625.8 kJ/mol, confirming the formation of this fascinating complex species as well. It means that the [2.2.2]paracyclophane ligand can be considered as an effective receptor for the ammonium cation in the gas phase.  相似文献   

13.
The rheological behavior of some cationic polyelectrolytes in aqueous solution is presented. The polyelectrolytes under study consist of polycations that have positive charges (N,N-dimethyl-2-hydroxypropylenammonium chloride) located along the main chain with or without nonpolar side chains (PCA5D1 and PCA5, respectively). This investigation mainly considers the influence of oscillation frequency and temperature on their rheological behavior in salt-free aqueous solution at three polymer concentrations (cp = 2%, 4%, and 6%) as well as in the presence of low molar mass salt (NaCl). The results indicate the main effect of these parameters was to modify the hydrophobic interactions between the side nonpolar groups of the modified polyelectrolyte. The comparison between the complex viscosity values, at the same polymer concentration, cp = 4%, for PCA5D1 and PCA5 shows higher values in the whole interval of temperatures under study and a pseudoplastic behavior at temperatures greater than 50°C for the former system.  相似文献   

14.
We present an approach to describe nuclear magnetic resonance absorption of dipolar-coupled rectangular configuration of nuclear spins associated with reorientation of ethylene bridge (–CH2–CH2–) in the crystal. The approach was applied to investigate reorientational mobility of dabco-linkers (1,4-diazobycyclo[2,2,2]octane) in metal–organic framework [Zn2(bdc)2(dabco)] (bdc—benzenedicarboxylate). Dabco rotation around the N–N axis is shown to remain down to 80 K and the activation energy of the molecule reorientation does not exceed 12 kJ/mol.  相似文献   

15.
The effect of salt ions on anionic polyelectrolyte chain structure has been studied by molecular mechanics and molecular dynamics, and the reason for sedimentation of the anionic polyelectrolyte in the salt solution is explored. Considering sodium polyacrylate as a model compound of anionic polyelectrolytes, the conformation of polyacrylate in salt-free and CaCl2 solution is studied. The simulation results showed that anionic polyelectrolytes in aqueous solution had an extended chain structure due to the role of strong electrostatic repulsion. After introduction of Ca2+ to the solution, the collapse of the anionic polyelectrolyte chain happens. By analysis of the radius of gyration and the radial distribution function, the basic reason for the collapse of anionic polyelectrolyte chains in salt solution is clarified with atomistic resolution.  相似文献   

16.
The hexamethyldisiloxane (HMDS)(CH3)3SiOSi(CH3)3 molecule is one of the basic building blocks of silicones and polysiloxanes, as it is used for many chain terminations. Far‐infrared, mid‐infrared, and polarized Raman spectroscopic studies, combined with quantum chemical calculations and vibrational normal mode analyses, were performed for the HMDS molecule. The internal rotation of the trimethylsilyl group was calculated to be nearly free. The large‐amplitude bending motion was found very anharmonic with a barrier to linearity below 4 kJ/mol. Exhaustive assignments of observed wavenumbers have been performed on the basis of calculated potential energy distributions (PED) and atomic displacements. By isotopic 16O 18O substitution, the Si O Si symmetric and antisymmetric stretching modes shift from 521 and 1074 cm−1 to 514 and 1028 cm−1, respectively. This spectroscopic observation provides convincing evidence that the molecule is bent with an angle estimated at around 150°. The comparison of HMDS vibrational spectra with the vibrational spectra of some siloxane derivatives reveals strong effects of silicon substituents on the Si O Si symmetric and antisymmetric stretchings. The Si O Si siloxane bridge group plays a key role in the properties of the HMDS molecule and may also account for some important silicone polymer properties such as their very low glass transition, their high compressibility, and their low surface tension. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films.The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in Fig. 1. The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and atomic force microscopy (AFM). The surface analysis results are presented through the adsorption steps of the polyelectrolytes layer by layer.  相似文献   

18.
Tunnelling frequencies, torsional excitations and spin-lattice relaxation times have been measured at various temperatures in tetramethyltin using INS and NMR techniques. All the results can be explained in terms of the molecular and crystal structure which establishes the existence of two types of non-equivalent methyl groups in the ratio 3∶1. The more frequent CH3(1) groups show a tunnel splitting of 13.3 μeV and a torsional excitation of 13.2 meV in the ground state, and an activation energy of 1.9 kJ/mol. The corresponding values for CH3(2) are 1.72 μeV, 17.7 meV and 3.4 kJ/mol, respectively. Rotational potentials have been derived using tabulated eigenvalues. The experiment confirms the theory of Hewson on the temperature dependence of tunnelling states.  相似文献   

19.
苯与铂化学吸附作用及其溶剂效应的量子化学研究   总被引:1,自引:0,他引:1  
采用Gaussian98程序密度泛函方法全优化计算了考虑水溶剂效应下苯与铂化学吸附作用的位能曲线,得到的位能曲线呈单调下降,苯与铂的吸附是自发过程.计算得到无水和有水溶剂作用时的吸附作用能分别为-149.6535和-202.1635kJ/mol;有水溶剂作用时吸附作用能被降低,展示出明显的水溶剂效应.计算还发现,铂可在苯环上发生吸附转移,在无水和有水溶剂效应下,铂转移的活化能分别为61.2537和70.8356kJ/mol.  相似文献   

20.
2H NMR studies of polyelectrolyte-induced domain formation in lipid bilayer membranes are reviewed. The 2H NMR spectrum of choline-deuterated phosphatidylcholine (PC) reports on any and all sources of lipid bilayer surface charge, since these produce a conformation change in the choline head group of PC, manifest as a change in the 2H NMR quadrupolar splitting. In addition, homogeneous and inhomogeneous surface charge distributions are differentiated. Adding polyelectrolytes to lipid bilayers consisting of mixtures of oppositely charged and zwitterionic lipids produces 2H NMR spectra which are superpositions of two Pake sub-spectra: one corresponding to a polyelectrolyte-bound lipid population and the other to a polyelectrolyte-free lipid population. Quantitative analysis of the quadrupolar splittings and spectral intensities of the two sub-spectra indicate that the polyelectrolyte-bound populations is enriched with oppositely charged lipid, while the polyelectrolyte-free lipid population is correspondingly depleted. The same domain-segregation effect is produced whether cationic polyelectrolytes are added to anionic lipid bilayers or anionic polyelectrolytes are added to cationic lipid bilayers. The 2H NMR spectra permit a complete characterization of domain composition and size. The anion:cation ratio within the domains is always stoichiometric, as expected for a process driven by Coulombic interactions. The zwitterionic lipid content of the domains is always statistical, reflecting the systems tendency to minimize the entropic cost of demixing charged lipids into domains. Domain formation is observed even with rather short polyelectrolytes, suggesting that individual polyelectrolyte chains aggregate at the surface to form "superdomains". Overall, the polyelectrolyte bound at the lipid bilayer surface appears to lie flat along the surface and to be essentially immobilized through its multiple electrostatic contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号