首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Thermoplastic vulcanizates (TPVs) based on styrene-butadiene rubber (SBR)/ethylene-vinyl acetate copolymer (EVA)/high-impact polystyrene (HIPS) blends were prepared by dynamic vulcanization, and the TPVs was compatibilized by styrene-butadiene-styrene block copolymer (SBS). The effects of SBS compatibilizer on mechanical, dynamic mechanical, and morphological properties of the TPVs were investigated systemically. Experimental results indicate that SBS had a good compatibilization effect on the SBR/EVA/HIPS TPVs. The tensile strength went through a maximum value at a compatibilizer resin content of 6 phr, and the elongation at break and tear strength increased with increasing SBS content. Morphology study shows that the vulcanized SBR particles were dispersed in the HIPS matrices. A rubber process analyzer reveals that the elastic modulus increased with increasing frequency and the incorporation of EVA in the TPVs led to the obvious decrease of elastic modulus; however, the further addition of compatibilizer SBS affected the elastic modulus less. The tan δ decreased continuously with increasing frequency. The addition of SBS in the TPVs led to enhanced hysteresis behavior and relatively high tan δ.  相似文献   

2.
Thermoplastic vulcanizates (TPVs) based on nitrile butadiene rubber (NBR)/ acrylonitrile-butadiene-styrene (ABS) blends were prepared by dynamic vulcanization, and then compatibilized by styrene-butadiene-styrene block copolymer (SBS). The effects of SBS compatibilizer on mechanical properties, Mullins effect, and morphological properties of the TPVs were investigated systematically. Experimental results indicated that SBS had an excellent compatibilization effect on the dynamically vulcanized NBR/ABS TPVs. The tensile strength increased from 9.4 to 15.8 MPa and the elongation at break went through a maximum value when the dosage of SBS was only 1 phr. Mullins effect results showed that the compatibilized NBR/ABS TPV had relatively lower residual deformation and internal friction loss than the NBR/ABS TPV, indicating the improvement of elasticity. Morphology studies showed that the vulcanized NBR particles were dispersed evenly in the TPVs and the dimensions of NBR particles were decreased remarkably with the incorporation of SBS compatibilizer.  相似文献   

3.
A chlorinated polyethylene rubber (CPE)/ethylene-vinyl acetate copolymer (EVA) (weight ratio = 70/30) thermoplastic vulcanizate (TPV) was prepared by dynamic vulcanization, with the TPV being reinforced by various amounts of zinc dimethacrylate (ZDMA). The effects of ZDMA content on the mechanical and morphological properties of the TPVs were investigated. Experimental results indicated that dynamically vulcanized CPE/EVA blends without ZDMA showed an elastomeric behavior when the CPE/EVA weight ratio ranged from 90/10 to 50/50. The mechanical properties of dynamically vulcanized CPE/EVA blends were enhanced remarkably by the incorporation of ZDMA, especially when the ZDMA content was 5 phr. The fracture surface morphology of the reinforced CPE/EVA TPVs was relatively rough and drawn fibers could be found clearly. There were many ZDMA particles dispersed on the etched surface of the reinforced CPE/EVA TPVs with diameters of below about 10 μm. Energy dispersive X-ray spectrometer (EDS) results showed that the ZDMA particles were coated with CPE, the ZDMA particles being surrounded by a large number of small crosslinked CPE particles with diameters of 1 μm.  相似文献   

4.
A novel water-swellable rubber (WSR) was prepared by dynamically vulcanizing polyvinyl chloride (PVC)/chlorinated polyethylene (CPE) blends where a crosslinked poly(sodium acrylate) (CPNaAA) was used as a super water-absorbent resin and dispersed in the CPE rubber. The mechanical, water-swelling, and morphological properties were investigated. The results showed that the dynamically vulcanized PVC/CPNaAA/CPE blends exhibited obvious elastomeric behavior and could be considered as thermoplastic vulcanizates (TPVs). The PVC/CPNaAA/CPE TPVs showed strong water-swelling ability, with the water-swelling ratio of the PVC/CPNaAA/CPE TPV with 30/60/70 weight ratio reaching 2400% at 200 h immersion. Moreover, compared with the first water-swelling behavior, the second and third water-swelling behaviors of the TPVs showed significantly improved water-swelling ratio and a remarkable decrease of weight loss. Morphological study showed that the interface interaction between the CPNaAA and CPE was weak. The CPNaAA particles in the blends could be separated and even be pulled out from the matrix under tensile stress, leading to the formation of suspended CPNaAA particles on the fracture surface of PVC/CPNaAA/CPE TPVs. The surface of the dried TPVs was rough and significant cavities could be found. The dynamic mechanical properties were investigated and the TPVs showed the typical Payne effect.  相似文献   

5.
The degree of dynamic vulcanization, mechanical properties, rheological behavior, and the ageing-resistant performance of trans 1,4-polyisoprene (TPI)/polypropylene (PP) and ethylene propylene diene rubber (EPDM)/PP thermoplastic vulcanizates with a blend ratio of 60/40 were investigated comparatively. The results showed that TPI had fully dynamically vulcanized when mixed with PP in the Hakke mixer chamber (175°C, 60 rpm) while EPDM had only partly dynamically vulcanized due to its saturated main chain backbone. With increased sulfur content, the torque at the end of the curing curves of the two thermoplastic vulcanizates (TPVs) increased in the curing characteristics measuring process as the degree of crosslinking increased. Comparing the two blends, TPI/PP-TPVs were possessed of a better mobility, a little lower tensile strength and tear strength, a little higher 100% modulus and hardness, and much lower elongation at break. EPDM/PP-TPVs had better ageing-resistant characteristics due to EPDM's saturated main chain backbone.  相似文献   

6.
Thermoplastic elastomers (TPEs) based on ethylene-vinyl acetate (EVA)/waste nitrile butadiene rubber powder (WNBRP) blends compatibilized by chlorinated polyethylene (CPE) were prepared by melt-compounding. The tensile strength and the elongation at break of the EVA/CPE/WNBRP blends were increased significantly compared with those of the EVA/WNBRP blends. The fracture surfaces of the EVA/CPE/WNBRP blends were smooth; moreover, the WNBRP in the etched EVA/CPE/WNBRP blends were inserted in the EVA matrix tightly. DMA results revealed that when the CPE dosage was 5 phr in the EVA/CPE/WNBRP blend, the Payne effect was weakened significantly.  相似文献   

7.
Thermoplastic elastomers (TPEs) based on high-impact polystyrene (HIPS)/waste styrene–butadiene rubber powder (WSBRP) blends were prepared by melt-compounding; they were enhanced by incorporation of styrene–butadiene–styrene block copolymer (SBS) and aromatic oil (AO). The effects of SBS and AO dosage on the mechanical properties, Mullins effect and morphological properties of the blends were investigated. Experimental results showed that the incorporation of SBS and AO in the HIPS/WSBRP blends could improve the mechanical properties significantly. Compared with that of HIPS/WSBRP blends, the elongation at break had a maximum value with 9 phr SBS and 15 phr AO loading, being improved by about 220%. The Mullins effect results showed that a softening effect appeared obviously after the first loading–unloading cycle, while the residual deformation and internal friction loss of the HIPS/SBS/AO/WSBRP TPEs were much lower than those of the HIPS/WSBRP blends, indicating the improvement of elasticity.  相似文献   

8.
Abstract

The interphase boundary of incompatible polymer blends such as poly(methyl methacrylate) (PMMA)/natural rubber (NR) and polystyrene (PS)/NR, and of compatible blends such as PMMA/NR/epoxidized NR (ENR) and PS/NR/styrene–butadiene–styrene (SBS) block copolymer, where ENR and SBS were used as compatibilizers, was studied by means of microindentation hardness (H) and microscopy. Cast films of neat PMMA and PS, and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR, and PS/NR/SBS were prepared by the solution method using a common solvent (toluene). Hardness values of 178 and 173 MPa were obtained on the surfaces of the neat PMMA and PS, respectively. After the inclusion of soft phases, the binary (incompatible) and the ternary (compatible) blend surfaces show markedly lower H‐values. Scanning electron and optical microscopy reveal a clear difference at the phase boundary of the surface of compatible (smooth boundary) and incompatible (sharp boundary) blends. The compatibilized blends were characterized by using microhardness measurements, as having the thinnest phase boundary (~30 µm), while incompatible blends were shown to present a boundary of about 60 µm. The hardness values indicate that the compatibilizer is smoothly distributed across the interface between the two blend components. Results highlight that the microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non‐ or compatibilized polymer blends and other inhomogeneous materials.  相似文献   

9.
Dynamically vulcanized blends based on polyvinylidene fluoride (PVDF)/acrylonitrile butadiene rubber (NBR) were prepared and characterized. The mixing torque and dynamic rheology analyses showed that the NBR phase increased the viscosity of the blends. Scanning electron microscopy (SEM) results showed that the NBR phase was in the form of spherical particles dispersed in the PVDF phase during dynamic vulcanization. Comparing PVDF-rich and NBR-rich blends, the size of the rubber particles in the NBR-rich blends were larger than those in PVDF-rich blends. Differential scanning calorimetry (DSC) results showed that the addition of the NBR phase reduced the PVDF crystallinity and Tm. Thermal gravimetric analysis (TGA) results showed that the dynamically vulcanized PVDF/NBR blends had a higher residual char mass than the neat PVDF and NBR. For PVDF-rich blends, the PVDF can be highly toughened by NBR; the Izod impact strength of the PVDF/NBR (70/30) blend was 77.5 kJ/m2, which was about six times higher than that of pure PVDF. For rubber-rich blends, the PVDF component was beneficial to the mechanical properties of the blends, which can be used as thermoplastic elastomers.  相似文献   

10.
The completely crosslinked shape memory polymer blends (SMPs) traditionally suffer from recycling problems due to their network structure. In this paper we describe the thermal, mechanical, and shape memory behavior of physical blends of OBC (Olefin block copolymer) and EVA (Ethylene-vinyl acetate copolymer), with and without modification of one or both of the components, prepared using a melt-blending method. These behaviors of the modified blends, based on maleated OBC (OBC-g-MA) and/or vinyltriethoxysilane (VTEOS) modified EVA, included OBC/EVA-g-VTEOS, OBC-g-MA/EVA, and OBC-g-MA/EVA-g-VTEOS blends; they were investigated to compare with the OBC/EVA blend. The SEM (scanning electron microscopy) observations showed that the compatibility of the silane and maleic anhydride modified OBC/EVA blends were better than that of the unmodified OBC/EVA blend. The crystallization temperatures of OBC and EVA in the modified blends were higher than those in the neat blend. The OBC-g-MA/EVA-g-VTEOS blend had the highest modulus and thermal stability of all investigated blend systems due to the numerous interactions between maleic anhydride and silane. The shape memory performance, as defined by the shape fixity ratio (Rf) and shape recovery ratio (Rr), was higher for the modified blends of one or both of the modified components than that for the OBC/EVA blend. These modified blends were readily reprocessible, like thermoplastic vulcanizates, and still retained shape memory behavior, in contrast with the fully crosslinked shape memory polymer blends; thus they were also improved in terms of the environmental aspects of processing.  相似文献   

11.
The preparation of dynamically vulcanized TPU (thermoplastic polyurethane)/EVM (ethylene-vinyl acetate copolymer rubber) blends and the effect of two peroxide curing agents, DCP (dicumyl peroxide) and BIPB (bis(tert-butyl peroxy isopropyl)benzene) on the mechanical properties, hot air aging, and oil resistance were investigated. Fourier transform infrared spectroscopy (FTIR), phase-contrast microscopy (PCM), and magnetic resonance crosslink density spectroscopy (MR-CDS) were used to analyze the curing reaction, phase structure, and crosslink density of dynamic vulcanizates. The results showed that the optimum parameters for dynamically vulcanized TPU/EVM by peroxide-DCP or BIPB in a HAAKE rheometer were: mixing temperature 140–150°C and rotor speed 30 rpm. The mechanical properties and oil resistance of these blends were improved by dynamic vulcanization. It was found that BIPB is a better curing agent than DCP for the dynamic vulcanization of TPU/EVM and its optimum content was 0.8 phr in the blend. FTIR spectra showed EVM and TPU could both be cured by peroxide in the blend and the curing reaction occurred at -CH2- groups that were linked with -C- instead of -O- and -CH3 groups in the blend. PCM photographs showed that dynamically vulcanized TPU/EVM blends had “sea-island” phase structure when the curing agent content was low and it had “interlocked/co-continuous” phase structure as the curing agent content was increased. The spin-lattice relaxation constant, T21, measured with MR-CDS proved that the crosslink density of the cured blends increased with increasing curing agent content.  相似文献   

12.
The Mullins effect during uniaxial compression tests, together with its reversibility, of ethylene-vinyl acetate copolymer (EVA)/nitrile-butadiene rubber (NBR)/zinc dimethacrylate (ZDMA) thermoplastic vulcanizates (TPVs) were investigated systematically. The experimental results indicated that the Mullins effect could be observed during the cyclic uniaxial compression tests and was accompanied with stress softening, residual deformation accumulation and hysteresis. The reversibility of the Mullins effect showed a temperature-dependent feature and was enhanced with increasing temperature.  相似文献   

13.
The degree of dynamic vulcanization, mechanical properties, rheological behavior, and the ageing-resistant performance of thermoplastic vulcanizates (TPVs) based on Trans 1,4-polyisoprene/polypropylene (TPI/PP) blends with the blend ratios of 70/30, 60/40, and 50/50 were investigated. The results showed that TPI fully dynamically vulcanized in the Haake mixer chamber when mixed with PP, and the specimen with the blend ratio 70/30, for the same sulfur content in all samples, had the lowest cross-linking degree of the TPI phase. The shear viscosity of TPI/PP-TPVs dropped as the shear rate increased and the specimen with the blend ratio 70/30 had a relatively greater shear viscosity in the region of shear rates less than 1000 s?1. With the antiageing agent Vulkanox 4020 NA (Bayer) added, all the TPI/PP-TPVs showed good ageing characteristics, and the specimen with the blend ratio 70/30 possessed the best mechanical properties.  相似文献   

14.
Ethylene vinyl acetate copolymer (EVA), with vinyl acetate contents of 60% or 80%, was used to improve the mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV). Blends of PHBV/EVA were prepared with the ratios of 90:10, 70:30, and 50:50. Stress–strain results indicated that the tensile strength, elongation at break, Young's modulus, and toughness of PHBV blends could be adjusted by changing the composition of blends and miscibility. It was found that high elongation at break, ca. 200%, was obtained for PHBV/EVA80 (50:50).  相似文献   

15.
《Composite Interfaces》2013,20(4):295-307
The paper reports some results of an experimental study on ethylene vinyl acetate (EVA) copolymer/olive husk flour (OHF) composites incorporated at various filler ratios (15, 30 and 45 wt%) in the absence and the presence of ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) terpolymer used as a compatibilizer. The composite samples have been prepared by melt blending and their chemical structure, as well as morphological, mechanical and water absorption properties investigated. It is shown that the compatibility of EVA/OHF composites is improved by the addition of EBAGMA terpolymer. Indeed, FT-IR analysis shows that chemical interactions have occurred between the compatibilizer and the base blend components. Morphological results from SEM shows better dispersion of the wood particles in the EVA matrix and the resulting composite samples exhibit better tensile properties at break and lower water absorption than the uncompatibilized ones. Moreover, the results indicate that the loading concentrations of both OHF and EBAGMA have an effect on the composite properties.  相似文献   

16.
The preparation of EVM (ethylene‐vinyl acetate copolymer rubber)/TPU (thermoplastic polyurethane) blends with various ratios and their compatibility were investigated. The influence of mixing technology, filler type and content, the VA content in EVM (40 and 70 wt.%) and the addition of compatibilizers on the mechanical properties and the compatibility of the EVM/TPU blends were systematically studied.

The test results showed that in preparation of the blend, fillers should be added to the blend to improve the processability and that among the fillers used, silica showed the best reinforcing effect on the blends. The best parameters for blending EVM and TPU in a HAAKE rheometer was: mixing temperature 160°C, rotor speed 45 rpm and mixing time 15 min. The test results also showed that the compatibility of EVM 700 (VA=70%) with TPU was better than that of EVM400 (VA=40%). The addition of a compatibilizer EVM‐g‐MAH and EVM‐g‐FME improved the processability of the blends. The addition of EVM‐g‐MAH also improved the compatibility of EVM 700/TPU blend; both the mechanical properties and hot‐air aging properties of the blends were improved. However, the addition of EVM‐g‐FME did not improve the compatibility of EVM/TPU blends.  相似文献   

17.
Blends of styrene butadiene rubber (SBR)/methyl-vinyl silicone rubber (MVQ) filled with dough molding compound (DMC) were prepared and the effects of various amounts of the SBR, as a compatibilizer of MVQ and DMC, on the mechanical properties and the oxygen index of the DMC filled SBR/MVQ blends were investigated. Dynamic mechanical analysis (DMA) and infrared spectrum analysis (IR) of the DMC/SBR/MVQ blends were also investigated. The results showed that the mechanical properties of the DMC filled MVQ blends were improved when SBR was used as a compatibilizer; the best mass ratio was 60 phr (parts per hundred total rubber) DMC, 25 phr SBR and 75 phr MVQ. The volume electric resistivities of the DMC filled SBR/MVQ blends with various DMC mass ratios were all above 5.8?×?1012 Ω?m; i.e., the electrical insulating property of the blends was excellent. Compared with the blends without DMC and the blends without SBR, the energy storage modulus and the peak area of the loss factor tan δ of the DMC reinforced SBR/MVQ blends were largest; the addition of DMC and SBR improved the thermal properties of the blends.  相似文献   

18.
The effect of compatibilization on the adhesion, fracture toughness, morphology, and mechanical properties of isotactic polypropylene (PP)/polyamide 6 (PA) blends was investigated. Maleic anhydride (MAH) functionalized poly-(ethylene-co-vinyl acetate) (EVA-g-MAH) and nonreactive EVA copolymer were used as compatibilizers in binary blends. An attempt of in situ compatibilization via addition of pure maleic anhydride to PA/EVA/PP melt was also made. The blends containing maleated EVA copolymer showed more regular and finer dispersion of phases, better adhesion at the interface, and improved mechanical properties.  相似文献   

19.
《Composite Interfaces》2013,20(2-3):175-196
The morphology of blends of poly(acrylonitrile-co-butadiene-co-styrene) (ABS) and poly(ethylene terephthalate glycol) (PET-G) has been investigated with special reference to the effect of blend ratio and compatibilization. Scanning electron microscopy (SEM) examination revealed different morphologies such as dispersed, cocontinuous and phase inverted depending on the composition, which indicates that the binary blends are immiscible and form a two-phase structure. Tensile properties decreased with increase in the ABS content while the impact strength reached an optimum at ca. 70% ABS. Influence of a triblock co-polymer based on styrene and butadiene (SBS) on morphology, mechanical measurements and failure topography was used as criterion of the compatibilization effect. The compatiblizing action of SBS was evidenced by the sharp decrease in domain size of the dispersed phase followed by an increase at higher concentrations. The conformation of the compatibilizer at the interface was further analyzed based on the area occupied by the compatibilizer at the blend interface. The results were in agreement with the theoretical predictions of Noolandi and Hong. The extent of interface adhesion in these blends was analyzed by examination of the fracture-surface morphology. Addition of SBS also improved notched impact, elongation-at-break, tensile strength and modulus of elasticity. These results confirm that SBS is an effective compatibilizer for ABS/PET-G blends.  相似文献   

20.
Ethylene‐α‐olefin copolymer (POE)/polystyrene (PS)/poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) blends were prepared via melt blending in a co‐rotating twin‐screw extruder. The effects of SEBS copolymer on the morphology and rheological and mechanical properties of the blends were studied. Scanning electron microscopy (SEM) photos showed that the addition of SEBS copolymer resulted in finer dispersion of PS particles in the POE matrix and better interfacial adhesion between POE and PS compared with POE/PS blends, which exhibited a very coarse morphology due to the immiscibility between them. Interestingly, the tensile strength increased from 12.5 MPa for neat POE to 23.5 MPa for the POE/PS/SEBS (60/10/30) blend, whereas the tensile strengths of POE/PS (85.7/14.3) blend and POE/SEBS (66.7/33.3) blend were only 10.5 and 16.5 MPa, respectively. This indicates that both SEBS copolymer and PS have a synergistic reinforcing effect on POE. Dynamic mechanical thermal analysis (DMTA) and dynamic rheological property measurement also revealed that there existed some interactions between POE and SEBS as well as between SEBS and PS. DMTA results also showed that the storage modulus of POE increased when PS and SEBS were incorporated, especially at high temperature, which means that the service temperature of POE was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号