首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of polyacrylamide/clay nanocomposites for the development of hydrogel system used in enhanced oil recovery is described. The synthesized nanocomposite copolymer was crosslinked with Chromium (III) acetate to form the hydrogel which exhibited an acceptable gel strength, gelation time and gel stability. The nanocomposite gels prepared with low crosslinker concentration (2000 ppm chromium acetate) showed higher gel strength and required longer gelation time than the conventional polyacrylamide (PAAm) gel; these are desirable properties for the effective placement of gel during enhanced oil recovery operations. The effects of various parameters, such as polymer and crosslinker concentration, on the gelation time and gel strength were evaluated using the bottle testing method. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) revealed the formation of intercalated and exfoliated clay morphologies. The effects of the clay content on the thermal stability and gel strength of the gel network were also investigated by thermogravimetric analysis (TGA) and rheological measurements (oscillatory time sweep profiles), respectively. Also, in-situ gelation and core flooding experiments revealed that a significant permeability reduction of the sand pack cores could be achieved at reservoir conditions when they were treated with the developed nanocomposite gel formulation. Hence, this nanocomposite gel system with low crosslinker concentration (10,000 ppm of nanocomposite polymer concentration containing 2000 ppm of clay with 2000 ppm chromium acetate crosslinker) may be suitable in water shut-off treatments required for enhanced oil recovery from the oil fields.  相似文献   

2.
The effect of benzoic acid (BA) on the crystallization behavior of poly(3-hydroxybut yrate; PHB) was studied. A differential scanning calorimeter was used to monitor the crystallization kinetics and thermal behavior. During the crystallization process from the melt, the presence of BA led to a decrease of the crystallization temperature of PHB compared with that for pure PHB. From the depression of the melting and glass transition temperatures of PHB, it can be concluded that BA is miscible, and has a strong plasticization effect on PHB. Isothermal crystallization at 80°C results showed that the addition of BA caused a decrease in the overall crystallization rate of PHB. Polarized optical micrographs of PHB/BA showed that the nucleation density of PHB spherulites decreased with increasing weight percentage of BA.  相似文献   

3.
In this work, syndiotactic polypropylene/multiwalled carbon nanotubes (MWCNT) nanocomposites, in various concentrations, were produced using melt mixing. The influence of the addition of MWCNT on the morphology, crystalline form, and the thermal and electrical properties of the polymer matrix was studied. To that aim, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, and dielectric relaxation spectroscopy were employed. Significant alterations of both the crystallization behavior and the thermal properties of the matrix were found on addition of the carbon nanotubes: conversion of the disordered crystalline form I to the ordered one, increase of the crystallization temperature and the degree of crystallinity, and decrease of the glass transition temperature and the heat capacity jump. Finally, the electrical percolation threshold was found between 2.5–3.0 wt.% MWCNT. For comparison purposes, the results of the system studied here are also correlated with the findings from a previous work on the isotactic polypropylene/MWCNT system.  相似文献   

4.
通过在位红外光谱测量研究了物理老化对非晶和δ晶型的间规聚苯乙烯(SPS)升温结晶过程的影响。发现对于晶样品来说,在物理老化前后,其结晶(即非晶→α晶型)的温度区间变化不大;但对于δ晶型的样品而言其物理老化后的晶型转变(即δ晶型→γ晶型)温度区间是104~127℃,与未物理老化的晶型转变温度区间90~112℃相比,转变温度升高了约14℃,这充分说明了物理老化使溶致型的δ晶型更加稳定,其溶剂与晶体的结  相似文献   

5.
The influence of crystallinity and stereoregularity on the infrared (IR) spectrum of atactic PVC in the solid state has been studied by many researchers [1-12]. Although the molecules in commercial PVC consist of both syndiotactic and isotactic sequences, the bulk polymer is not highly stereoregular, having approximately 50% syndiotacticity. Its infrared spectrum is different from that of highly syndiotactic PVC [3,5,7,9,10-12], particularly in the carbon-to-chlorine stretching region where there are three bands located at 610(615), 635, and 690 cm?1. These three bands are known to be of complex origin, since each band consists of more than one absorption frequency and its relative intensity depends on the physical state or history of the specimen [3,5,7,9,10-12]. The spectrum in this region is most rigorously interpreted in terms of chain conformational structure, the spatial arrangement of the atoms around the C-C1 bond. Thus, while changes in absorbance intensities for the bands with history do not necessarily reflect changes in crystallinity, their history dependence renders these bands potentially useful as crystallinity indicators.  相似文献   

6.
The molecular orientation, thermal behavior, and crystal lattice structure in extruded strands of a thermotropic liquid crystalline polymer (LCP) were studied with wide-angle x-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The purpose of this work is to elucidate the effects of draw-down ratio and annealing treatment on the structure development in the LCP strands. The crystal orientation function markedly increased with increasing draw-down ratio, but the increase of orientation function saturated at higher draw-down ratio. Annealing treatment below 250°C slightly increased the degree of orientation, whereas the molecular orientation was relaxed by annealing at 270°C. In addition, the thermal properties and crystal lattice structure were sensitive to the annealing treatment. The change of DSC curves with annealing temperature suggested that the initial crystalline texture of as-extruded samples was reorganized into a more ordered structure by the annealing treatment. Draw-down ratio had some effects on the thermal properties. The molecular orientation facilitated the crystallization during annealing.  相似文献   

7.
The crystalline-memory effect on the crystallization of syndiotactic polypropylene is investigated by differential scanning calorimetry and solid-state NMR spectroscopy. The influence of several parameters in the thermal (pre-)treatment and the crystallization conditions is studied in detail. In agreement with previous reports, the power law behavior of the overall crystal growth rate is found to be remarkably different for melts with and without memory. This has previously been interpreted in terms of changes in the structure and/or the dynamics of the melt (disentangled state, local order), and a variety of NMR experiments is used to detect such potential changes. All our NMR results are identical for melts with and without memory, therefore excluding any large effect of the "memory" on melt structure or dynamics exceeding the percent level of the whole sample volume, and thus supporting more conventional interpretations in terms of persisting nuclei. Samples that were pre-crystallized at lower temperatures exhibit a larger memory effect, and the potential nuclei fraction is a non-equilibrium structure and is restricted to the 0.1% level if it is crystalline or highly ordered.  相似文献   

8.
Poly(vinyl chloride)(PVC)/halloysite nanotubes (HNTs) nanocomposites were prepared by melt blending. The effects of HNT content on the mechanical properties, morphology, and rheological properties of the nanocomposites were investigated. The results showed that HNTs were effective in toughening and reinforcing PVC nanocomposites. The notched impact, tensile and flexural strength, and flexural modulus of the nanocomposites were remarkably increased compared with those for the pure PVC. Scanning electron microscopy (SEM) results illustrated the ductile behavior of the nanocomposites, with a possible cavitation mechanism. Transmission electron microscopy (TEM) results showed that HNTs were uniformly dispersed in the PVC matrix. Interfacial interaction of hydrogen bonding between the HNTs and PVC matrix was substantiated. The plasticization times of PVC/HNTs nanocomposites were found to be shorter and the equilibrium torque was higher than that for the pure PVC.  相似文献   

9.
Poly(phenylenesulfide) (PPS) is a high-performance engineering thermoplastic with exceptional thermal and chemical resistance. The results of crystallization behavior of blends of PPS with amorphous polyamide (PA) are presented. The melting and crystallization behavior was studied using differential scanning calorimetry (DSC), and the crystalline morphology was studied using optical microscopy. The results of thermal analysis indicate that the blends exhibit composition-dependent melting point depression. Optical microscopy studies showed the uniform distribution of amorphous nylon in PPS spherulites. The presence of amorphous nylon enhanced the growth rate compared to that for the neat polymer. The observed changes in the equilibrium melting point crystallization behavior, and spherulitic growth rate are explained.  相似文献   

10.
Dr. J. Chauffoureaux (Solvay, Brussels, Belgium): I suggest that we start the discussion with the problems related to the modification of the structure of PVC during processing. What happens in a singlescrew extruder o r in a twin-screw extruder? What a r e the influences of the particle structure of the PVC polymer and of additives on the fusion o r the gelation during processing?  相似文献   

11.
Polyacrylamide/laponite/chromium triacetate nanocomposite (NC) hydrogels were prepared by incorporation of the laponite nanoparticles in partially hydrolyzed polyacrylamide followed by cross-linking of their aqueous solutions with chromium triacetate. Influence of nanoparticle, cross-linker, polymer concentrations, and gelation media (water) temperature, salinity, and rheometer frequency on the viscoelastic behavior of the NC hydrogels were studied by probing the network properties. In addition, swelling behaviors of these NC gels in tap and oil reservoir water were evaluated. According to dynamic rheometry of the gelation process, the limiting storage modulus of the NC gels increased with increasing laponite content. The addition of laponite into the polyacrylamide gelling system increased their viscous properties more strongly than the elastic properties. The ultimate elastic modulus of the NC gels increased with increasing water salinity and temperature. Increasing rheometer frequency during gelation retarded the sol–gel transition and decreased the ultimate elastic modulus. The equilibrium swelling ratio of the NC hydrogels in tap water decreased with increasing laponite content. The salt sensitivity of the NC gels in oil reservoir water slightly decreased with increasing laponite content. These results suggest the superiority of the hydrolyzed polyacrylamide (HPAM)/chromium acetate/laponite NC hydrogels for water shut-off applications in oil reservoirs as compared with unfilled HPAM gels.  相似文献   

12.
Poly(vinylidene fluoride) (PVDF) membranes were prepared by the immersion precipitation method. Effects of the maturation time of dopes on the morphology and crystallization of the prepared membranes were investigated. The analysis showed that the maturation time played an important role in determining the morphology of the prepared membranes. For the dope prepared in the initial day, liquid–liquid demixing preceded solid–liquid demixing in the process of the membrane formation. The morphology of the cross section of the prepared membrane (M1) was finger-like structures with a sponge substrate beneath the porous skin. During the maturation, the dopes underwent a microscopic phase separation and the PVDF crystallized, which resulted in the existence of micro-liquid phases and micro-solid phase crystalline areas in the dopes. In the process of the membrane formation, liquid–liquid demixing took place by nucleation and growth of droplets of the polymer rich phase in the micro-liquid phase. The micro-solid phase crystallites were connected together by the polymer chains, and formed a three-dimensional network gelation morphology. The crystal structure of M1 was mainly β crystals. With increasing maturation time of the dopes, the proportion of β decreased crystals, but that of α crystals increased for the prepared membranes.  相似文献   

13.
Three crystallization methods for growing large high-quality protein crystals, i.e. crystallization in the presence of a semi-solid agarose gel, top-seeded solution growth (TSSG) and a large-scale hanging-drop method, have previously been presented. In this study the effectiveness of crystallization in the presence of a semi-solid agarose gel has been further evaluated by crystallizing additional proteins in the presence of 2.0% (w/v) agarose gel, resulting in complete gelification with high mechanical strength. In TSSG the seed crystals are hung by a seed holder protruding from the top of the growth vessel to prevent polycrystallization. In the large-scale hanging-drop method, a cut pipette tip was used to maintain large-scale droplets consisting of protein-precipitant solution. Here a novel crystallization method that combines TSSG and the large-scale hanging-drop method is reported. A large and single crystal of lysozyme was obtained by this method.  相似文献   

14.
The dynamic rheological behavior, application of time-temperature superposition (TTS) and the failure mechanism of TTS are studied for the poly(vinyl chloride) (PVC)/trioctyl trimellitate (TOTM) (100/70) system. The Arrhenius equation, Williams–Landel—Ferry (WLF) equation, mathematical non-linear fitting and manual shift are applied to TTS fitting. For the PVC/TOTM (100/70) system, none of those methods can give well-superimposed master curves with either single horizontal shift or two-dimensional (horizontal and vertical) shift. The failure reason is attributed to the thermorheological complexity of the PVC/TOTM (100/70) system. Curves of the storage modulus versus the frequency can be well fitted with an empirical equation (G′=G0+Kω n ) usually used to describe filled polymer systems, indicating the multilevel flowing unit characteristic in this system. With the increase of test temperature, the structure of the PVC/TOTM (100/70) system changes and an apparent transition appears in the rheological behavior. Differential scanning calorimetry (DSC) results reveal that for the PVC/TOTM (100/70) system there are microcrystallites present below 220°C, but above the rheological transition temperature (190°C) the bulk of the microcrystallites melted, which corresponds to the appearance of viscous flow participating in the rheological behavior. It verifies the fact that the gel networks crosslinked by microcrystallites dominate the rheological behavior below the transition temperature in the PVC/TOTM (100/70) system. The quantity of microcrystallites remaining in the melt determines the perfection of the physical gel networks. With the increase of test temperature, the microcrystallites melted gradually and the gel networks are broken up.  相似文献   

15.
In this research, nanocomposite hydrogels were prepared by cross‐linking of partially hydrolyzed polyacrylamide/sodium montmorillonite aqueous solutions with chromium triacetate. The gelation process and influence of nanoclay content and salt concentration on swelling behavior were investigated. Study of gelation behavior using dynamic rheometry method showed that increasing the nanoclay content decreases the storage modulus, due to the partial adsorption of polymer chains onto the clay surface and ionic interaction between negative layers of sodium montmorillonite and Cr.3+ By increasing the cross‐linker concentration of the gelation system, the viscous energy dissipation properties of the nanocomposite gel decreases. Swelling ratio of the nanocomposite gels in distilled water decreased as the concentration of the nanoclay increased. However, nanocomposite gels showed lower salt sensitivity in electrolyte media compared with unfilled gels.  相似文献   

16.
高压下尼龙1010-单壁碳纳米管复合材料的结晶行为   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用XKY-6×1200MN型六面顶压机,在不同温度、压力条件下处理30 min后制备了尼龙1010(PA1010)-单壁碳纳米管(SWCNT)复合材料的高压结晶样品,通过X射线衍射(XRD)、差热分析仪(DSC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM),研究了高压处理样品的结晶行为、结构变化及形貌特征。结果表明:在1.0~2.5 GPa压力下,属于高压熔体结晶;在3.0和4.5 GPa压力下属于高压退火处理;高压结晶或高压退火均有助于聚合物片层晶体的增厚,并且高压熔体结晶的增厚效果优于高压退火处理。XRD结果表明,PA1010的三斜晶型在高压处理后保持不变,高压熔体结晶或高压退火都可以使(100)晶面和(010)晶面间距减小,即高压处理致使聚合物分子链紧密堆积。DSC结果表明:在高压熔体结晶过程中,升高压力和温度可以得到片层厚度较大的PA1010晶体;在2.0 GPa、350 ℃下获得的高压结晶样品的熔点和结晶度最高,分别达到208.5 ℃和64.6%。SEM和TEM结果表明:与常压结晶样品相比,高压结晶样品内部出现c轴厚度超过150 μm的大尺寸晶体;SWCNT与PA1010基体之间形成相互穿插的网络结构,刚性的SWCNT作为高压成核剂促进PA1010晶体生长和增厚。  相似文献   

17.
In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites.  相似文献   

18.
The statistical theory of gelation in the simplest process of the non-random polycondensation (S. I. Kuchanov, T. V. Zharnikov, J. Stat. Phys., 111(5/6), 1273 (2003)) has been refined as to be able to take into account the effect of a monomer configuration on topological characteristics of the polymer network of the gel. Proceeding from the kinetic analysis of such a polycondensation, we rigorously prove that it can be described in terms of some stochastic branching process. The parameters of the process depend on the overall number of functional groups in the monomer as well as on the pattern of their mutual arrangement. Examples of some model systems illustrate the effect of kinetic and configurational factors on the topology of a polymer network formed in the course of non-random polycondensation.  相似文献   

19.
A new series of gel polymer electrolytes (GPEs) based on an optimized composition of polymer blend-salt matrix [poly(vinyl chloride) (PVC) (30 wt%) / poly(ethyl methacrylate) (PEMA) (70 wt%): 30 wt% zinc triflate Zn(CF3SO3)2] containing different concentrations of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid has been prepared by simple solution casting technique. The prepared films of gel polymer membranes have been characterized utilizing complex impedance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric (TG), and cyclic voltammetry (CV) analyses. The dielectric constant and ionic conductivity pursue similar trend with increasing EMIMTFSI concentration. The addition of ionic liquid in varied amounts into the optimized polymer blend-salt system effectively reduces the glass transition temperature (Tg) of the film as revealed from differential scanning calorimetry results. The origin of an improved thermal stability and feasible cyclic performance in respect of the best conducting sample of the resultant gel polymer electrolytes was also examined by utilizing thermogravimetric and cyclic voltammetry measurements.  相似文献   

20.
Solid polymer electrolytes (SPEs) composed of poly(vinylidene fluoride) (PVdF)-poly(vinyl chloride) (PVC) complexed with lithium perchlorate (LiClO4) as salt and ethylene carbonate (EC)/propylene carbonate (PC) as plasticizers were prepared using solvent-casting technique, with different weight ratios of EC and PC. The amorphicity and complexation behavior of the polymer electrolytes were confirmed using X-ray diffraction (XRD) and FTIR studies. TG/DTA and scanning electron microscope (SEM) studies explained the thermal stability and surface morphology of electrolytes, respectively. The prepared thin films were subjected to AC impedance measurements as a function of temperature ranging from 302 to 373 K. The temperature-dependence conductivity of polymer films seems to obey VTF relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号