首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A novel flame-retardant cyclotriphosphazene-based epoxy resin (CPEP) was successfully prepared by epoxidation of bis-(4-hydroxyphenylsulfonylphenoxy) tetraphenoxycyclotriphosphazene with epichlorohydrin, and was characterized by 1H nuclear magnetic resonance (NMR), Fourier transform infrared, and gel permeation chromatography (GPC). Then the blends of CPEP and diglycidyl ether of bisphenol A (E51) with different mass ratios were cured using 4,4′-diaminodiphenylmethane as a curing agent. The curing behaviors and the glass transition temperatures of the resulting thermosets were studied by differential scanning calorimetry. The thermal stabilities and flame-retardant properties of the cured resins were studied by thermogravimetric analysis and UL94 tests, respectively. In addition, mechanical, hydrophobic, and electrical properties were also characterized. Compared to the corresponding E51-based thermosets, the cured resins with a mixture of CPEP and E51 showed better thermal stabilities, higher char yields, and greatly improved flame-retardant properties. Furthermore, relatively good mechanical properties, hydrophobicity, and electric resistance were maintained. The cured resins of CPEP/E51 (mass ratio 1:1) achieved UL94 V-0 rating, indicating that the epoxy resin prepared in this study could be used as a flame-retardant coating material.  相似文献   

2.
A novel flame retardant (NSiB) containing nitrogen, silicon and boron was synthesized through reacting of N-(β-aminoethyl)-γ-aminopropyl trimethoxy-silane (KH-792) and boric acid. The structure of NSiB was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS). The effects of NSiB on the flame retardancy and thermal behaviors of polypropylene (PP)/polyethylene vinyl acetate (EVA) blends were investigated by limiting oxygen index value (LOI), vertical burning tests (UL-94) and thermal gravimetric analysis tests (TGA). The results showed that the flame retardancy and thermal stability of PP/EVA blends were improved with the addition of NSiB. When 7.5 wt% DOPO (phosphaphenanthrene) and 0.5 wt% NSiB were incorporated, the LOI value of the PP/EVA blends was 26.9%, and the class V-0 of UL-94 test was passed, as compared to the LOI value of 22.4% and class V-2 of UL-94 test for 8.0 wt% DOPO only and 16.7% and fail, respectively, for the PP/EVA blends alone. The char structure observed by SEM indicated that the surface of the char for the PP/EVA/7.5 wt% DOPO/0.5 wt% NSiB blends had a denser and continuous char structure when compared with that of the PP/EVA blends and PP/EVA/8.0 wt% DOPO blends. These results indicated that there was a good synergistic effect for NSiB and DOPO.  相似文献   

3.
Carbon nanotubes (CNTs) are functionalized by vinyltriethoxysilane (VTES) to incorporate the -O-C2H5 functional group and become VTES—CNT. The VTES—CNTs are added to the modified DGEBA epoxy resin that contains silicon to induce the sol-gel reaction. The final products are organic/inorganic nanocomposites. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) are used to study the thermal property of nanocomposites. The Tg was increased from 118 to 160 °C and char yield of composites that contained 9 wt% CNT at 750 °C was increased by 46.94%. The integral procedural decomposition temperature (IPDT) was increased from 890 to 1571 °C. The limiting oxygen index (LOI) and UL-94 tests were classified as the flame retardance. The LOI of composites was increased from 22 to 27 and the UL-94 changed from V-1 to V-0 when the contents were increased to 9 wt%. The nanocomposites had a higher char yield and were highly flame retardant. The products can meet to the requirements of halogen-free and phosphorus-free ecological flame retardant.  相似文献   

4.
A novel synergistic flame retardant agent containing boron and silicon, namely polyborosiloxane (PBSil), was prepared via the condensation reaction of boric acid (BA), tetraethoxysilane (TEOS), and octamethyl cyclotetrasiloxane (OMCTS). The obtained PBSil was then combined with an intumescent flame retardant (IFR) to flame retard polypropylene (PP), and the effects of PBSil on the flame retardancy and thermal degradation of the PP/IFR composite were investigated. It was found that PBSil could improve the compatibility between the IFR and the PP matrix, thereby improving the mechanical properties of the composite. Compared with zinc borate, zeolite, and nano-silica, PBSil showed much better flame retardancy and smoke suppression in the PP/IFR composite. When the content of PBSil was 3.0 wt%, the limiting oxygen index (LOI) value of the flame retardant PP was increased from 29.0% to 35.0%, and the UL-94 rating was improved from V-1 to V-0 rating. Simultaneously, the heat release rate (HRR) and smoke production rate (SPR) of the composite were decreased dramatically. The thermogravimetric (TG) analysis, Fourier transform infrared (FTIR), and thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) results showed that, PBSil could enhance the thermostability of the IFR, and promote the char formation. Furthermore, the compactness and thermostability of the intumescent char were significantly improved, contributing to the improvement of the flame retardancy of the composite.  相似文献   

5.
The coordination structure, flame retardancy, thermal stabilities, and degradation mechanism of zinc alginate films were studied by Fourier transform infrared spectroscopy (FTIR), limiting oxygen index (LOI), vertical burning (UL-94), and thermogravimetric analysis (TGA) tests. The FTIR results showed that the structure of zinc alginate was correlated to its bidentate bridging coordination. The LOI (49.3) and UL-94 (V-0 rating) results indicated that zinc alginate was an inherent flame retardant material. The TG results showed that zinc alginate had better thermal stabilities than sodium alginate in the lower temperature zones; however, the thermal stabilities of zinc alginate were worse than those of sodium alginate at higher temperatures because of the decomposition of zinc oxalate formed in the degradation process of zinc alginate. Based on the TG results and FTIR of the residues at different temperatures, the effect of zinc ions on the degradation process of alginate was different from that of sodium ions. The zinc ions can catalyze alginate to form the residues and increase the amount of the residues, finally forming zinc oxide. Further, it could decrease the release of flammable gases and increase the flame retardancy of alginate.  相似文献   

6.
Poly (amide-amidic acid) (PAA) and 4, 4′-diaminodiphenylsulfone (DDS) with varying molar ratios were used as co-curing agents to cure diglycidyl ether of bisphenol-A (DGEBA). The curing process was investigated. The differences between PAA and the conventional curing agents are discussed relative to the curing behavior and mechanism when cured with DGEBA. It was found that a lower temperature was needed to cure DGEBA when PAA was used as co-curing agent with DDS. There was only one step during the curing process of DGEBA and PAA, compared with the conventional curing agents (two steps). The activation energy (E) of the curing process of DGEBA with the co-curing agents, computed using model free estimations, was lower than that with DDS and PAA individually.  相似文献   

7.
采用熔融共混技术,将聚磷酸铵(APP)和氢氧化铝(ATH)引入到聚氨酯弹性体(TPU)中,制备了一系列热塑性聚氨酯/聚磷酸铵/氢氧化铝(TPU/APP/ATH)复合材料。采用傅里叶红外光谱(FTIR)、X-射线光电子能谱(XPS)、扫描电镜(SEM)、激光拉曼光谱研究了TPU和阻燃TPU(FR-TPU)复合材料燃烧后炭渣的微观形貌、表面结构、元素组成、键合状态和石墨化程度,结合阻燃性能测试,揭示APP和ATH的协同阻燃机制。SEM分析表明相较于APP与ATH单独使用,TPU/APP/ATH炭层的空洞结构更少,炭渣的致密性更高。XPS分析表明FR-TPU的炭渣中C元素含量相比于纯TPU有所降低,O元素的含量有所上升,其中TPU/APP10/ATH10的C元素含量从88.2%降至69.24%,O元素的含量从8.07%升至17.78%,P和Al元素含量相较于单独添加分别从11.74%和16.36%下降至3.91%和3.31%。在此基础上,通过对C元素的分峰拟合发现TPU炭渣中C—C/C—H,C—O/C—N和CO/CN含量分别为61.05%,35.65%和3.30%;TPU/APP10/ATH10炭渣中三种结构含量分别为45.38%,45.00%和9.63%,说明ATH和APP复配使用有利于C元素形成酯、醚、羰基、羧酸(盐)、酯基等结构。通过对O元素的分峰拟合发现,TPU炭渣中O2/H2O,—O—,O三种结构含量分别为28.75%,44.36%和26.89%;TPU/APP10/ATH10炭渣中O2/H2O,—O—,O三种结构含量分别为44.33%,32.78%和22.89%,说明APP和ATH的加入有利于炭渣中O元素形成O2/H2O结构。通过对N元素的分峰拟合发现,TPU炭渣中—NH—,N结构的N元素含量分别为40.93%和59.07%;TPU/APP10/ATH10中—NH—,N结构的N元素含量分别47.17%和52.83%,说明ATH与APP复配使用促进了—NH—结构的形成。拉曼测试表明,相比于单独使用,APP和ATH复配使用,炭层的石墨化程度更好,致密性更高。以上分析结合阻燃测试可以得出TPU/APP/ATH复合材料阻燃机制:ATH受热分解生成氧化铝,吸收热量并释放大量水蒸气,有效促进APP降解,生成不燃性的氨气和聚磷酸,氨气和水蒸气稀释可燃性气体的浓度。随着温度继续升高,氧化铝可继续与聚磷酸反应生成偏磷酸铝[Al(PO3)3],同步催化聚氨酯基体成炭,形成高度石墨化炭层,石墨化炭层与偏磷酸铝一起覆盖在基体表面,有效抑制燃烧区域物质以及能量的输运,从而达到阻燃目的。  相似文献   

8.
Phosphorus flame retardants, bis(2,6-dimethylphenyl) phenyl phosphonate (BDMPP) and poly(bisphenol S phenyl phosphonate) (PBSPP), were synthesized and their structures were characterized with Fourier transform infrared spectroscopy, and 1H and 31P nuclear magnetic resonance. The phosphorus compounds were used to impart flame retardancy to polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS). Combustion behaviors and thermal degradation properties of the systems were assayed by limiting oxygen index (LOI), vertical burning test (UL-94), and thermogravimetric analysis. PC/7 wt.% BDMPP and PC/5 wt.% PBSPP pass UL-94 V-0 rating; their LOI values were 32.7% and 33.6% respectively. ABS/35 wt.% BDMPP and ABS/30 wt.% PBSPP also pass the UL-94 V-0 rating and their LOI values were 28.9% and 28.3% respectively. Scanning electron microscopy revealed that the char properties had direct effects on flame retardancy.  相似文献   

9.
The model that takes chemical reactions, heat and mass transfers in the boundary layer of the particle into account simultaneously, is developed for simulating the combustion of a pulverized coal particle. The FTIR in situ temperature-measurements and the comparison between numerical simulations for the pulverized coal and the devolatilized char show that the volatile flame induces the combustion of the primary product of surface oxidation CO. Due to the influence of volatile flame, the char particle can be ignited at temperature lower than its heterogeneous ignition temperature, which elucidates the physical essence of joint hetero-homogeneous ignition mode discovered by Jüntgen.  相似文献   

10.
Dimethylphenylpropargyl ammonium bromide (DMPPAB) was synthesized and used to modify pristine montmorillonite (MMT) by a cation exchange process. The organically modified montmorillonite (OMMT) was verified and used to mix with a silicon-containing polyarylacetylene (PSA) as well as MMT. The PSA/MMT and PSA/OMMT nanocomposites were prepared by solution under sonication and melting intercalation processes, respectively, and then cured by a step heating process. The thermal and flexural properties of the cured PSA and nanocomposites were studied by thermogravimetric and dynamic mechanical analysis. The results showed that the intercalation of DMPPAB into the MMT galleries made the d-spacing enlarge. During PSA curing, the cure heat of PSA caused the MMT and OMMT to delaminate and exfoliate in the PSA matrix. The glass transition temperature of the cured PSA and nanocomposites were higher than 500?°C. The inner acetylenic groups in the PSA resin could further crosslink above 300?°C. The temperature at 5% mass loss of the cured PSA decreased by 4.6% with 3% mass fraction of OMMT loading, and the char yield of the cured PSA changed only slightly. The flexural strength of the cured PSA was augmented with addition of MMT or OMMT, but the flexural modulus of the cured PSA decreased slightly. The flexural strength of the cured nanocomposite increased from 20.1?MPa to 30.1?MPa when 3% mass fraction of OMMT was added into the PSA matrix.  相似文献   

11.
Diglycidyl ether of bisphenol-A (DGEBA) was cured by poly(amide-amidic acid) (PAA) and a commonly used curing agent, 4,4’-diaminodiphenylsulfone (DDS), in different molar ratios. It was found that the flexural strength, tensile strength, tribological properties, and thermal stability strongly depended on the molar ratios of PAA and DDS in the mixed curing agents. The highest flexural strength was obtained when DGEBA was cured with PAA individually. The tensile strength increased with the increase of PAA content in the mixed curing agents. The DGEBA cured with PAA containing curing agents possessed lower friction coefficient than that cured with DDS individually. The wear rate greatly decreased with the PAA content increasing in the mixed curing agent. Tribological behaviors and wear mechanisms were discussed by observing the morphology of wear debris and worn surfaces of the tested samples using scanning electron microscopy (SEM).  相似文献   

12.
The synergistic effect of poly[(phenylsilsesquioxane)-co-(dimethylsiloxane)] (PPSQDS) and potassium diphenyl sulfonate (KSS) on the thermal degradation and flame retardancy of polycarbonate (PC) was studied. The flame retardancy of PC was improved by the combination of PPSQDS and KSS, and a V-0 rating for 1.6 mm thickness sample was successfully obtained. The thermal degradation of the flame retarded PC was characterized by thermogravimetric analysis (TGA) and the degradation activation energy (E a) was calculated according to the Kissinger and Flynn-Wall-Ozawa (F-W-O) methods. The E a value of PC was decreased by the combination of PPSQDS and KSS, indicating that the synergistic effect of PPSQDS and KSS facilitates the thermal degradation of PC and accelerates char formation.  相似文献   

13.
李镇江  梁玮  孙鹏  张林 《强激光与粒子束》2012,24(11):2660-2664
采用二官能度环氧树脂对己二胺进行改性,得到了含多段长亚甲基链段的柔性固化剂。利用红外光谱表征其基本结构。采用环氧树脂E-44与之进行固化,通过不同温度下固化时间对力学强度影响的分析,初步确定其最佳固化条件为80 ℃,6 h。通过热重分析检测不同固化比例下固化产物的热稳定性,并采用差示扫描量热法研究该固化剂的固化动力学参数、反应活性、最佳固化温度及时间。对其固化物拉伸剪切强度进行测试,测试结果表明:在固化比例为1:0.5时,在-196 ℃、室温、60 ℃下的拉伸剪切强度分别为16.84,14.73和13.52 MPa,基本满足实际应用的需求。  相似文献   

14.
A novel charring agent poly(p-ethylene terephthalamide) (PETA) was synthesized by using terephthaloyl chloride and ethylenediamine through solution polycondensation at low temperature. Poly(p-ethylene terephthalamide) was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for acrylonitrile–butadiene–styrene (ABS). The thermal degradation behavior and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI) tests, and the morphology and structures of residues generated in different conditions were investigated by scanning electron microscopy and Fourier transform infrared spectra. The results showed that PETA could be effective as a charring agent, the flame retardancy of ABS and the weight of residues improved greatly with the addition of IFR. When the content of APP was 25 wt% and PETA was 12.5 wt%, the LOI value of IFR–ABS system was found to be 33, and class V-0 of UL-94 test was passed. The microstructures observed by scanning electron microscope indicated that the charring agent (PETA) can promote formation of uniform and compact intumescent charred layers in IFR–ABS system after burning.  相似文献   

15.
Phosphorus-containing montmorillonite (P-MMT) was successfully prepared via intercalating resorcinol bis(diphenyl phosphate) (RDP) into montmorillonite (MMT) layers, and was utilized as a synergistic agent in the polypropylene/melamine pyrophosphate/pentaerythritol (PP/MPP/PER) intumescent flame retardant (IFR) system. The synergistic effect of P-MMT and IFR was investigated by dynamic mechanical analysis (DMA), thermogravimetry (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), and scanning electron microscopy (SEM). It was found that P-MMT could significantly improve the thermostability and flame retardancy of the PP/IFR composite. When 2.0 wt% P-MMT replaced the same amount of IFR in the composite, both the onset decomposition temperature (T onset) and the maximum-rate decomposition temperature (T max) of the PP/IFR composite were increased by more than 14°C. Meanwhile, the LOI value was increased from 29.5% to 32.5%, the UL-94 rating was enhanced from V-1 to V-0, and the heat release rate (HRR), total heat release (THR), and mass lose rate (MLR) were decreased dramatically, which proved that P-MMT had a good synergistic effect with IFR in flame retardant PP.  相似文献   

16.
Abstract

An epoxy resin (EP) composite with a novel phosphorus and silicon-containing flame retardant (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-polyvinylsilicone-polyphenylaminosilicone, DOPO-V-PA) was prepared in this study. From the cone calorimeter measurements, it was confirmed that the EP/DOPO-V-PA (FREP) composite had relatively better flame retardancy than pure EP. The activation energy was calculated with the Kissinger and Ozawa–Flynn–Wall methods. The results showed that the activation energies of pure EP had slightly higher values than the FREP composite in the early and middle degradation stage (conversion ≤ 90% spaces), which indicated that the earlier degradation of the DOPO-V-PA at low temperature accelerated the degradation of the EP matrix. However, the activation energy values of the FREP were higher than those of pure EP in the final stage, which are attributed to the thermal stabilization effect of the DOPO-V-PA through the promoting of EP char formation.  相似文献   

17.
The effects of different curing pressures on the structure and properties of bisphenol A type epoxy adhesive film (METLBOND 1515-4, Cytec Industries Inc. Germany) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), nano-indentation analysis, and tensile testing. When the curing pressure was increased from 0?MPa to 0.5?MPa FTIR showed that more rigid carbonyl groups were found in the polymers. In addition, the microscopic and macroscopic mechanical properties of the cured adhesive films were improved. Nano-indentation analysis showed that the elastic modulus of the cured product increased significantly, from 2.92?GPa to 3.49?GPa. However, the tensile tests showed that the breaking-elongation increased only slightly, from 3.10% to 3.73%, when the curing pressure was increased from 0?MPa to 0.5?MPa. DMA results showed that the crosslinking densities of the cured epoxy films were improved by the increased curing pressure. These results indicated that a higher modulus of the cured product could be gained by increasing the curing pressure appropriately.  相似文献   

18.
Ethylene-vinyl acetate thermoset rubber (EVM) with high vinyl acetate content has been widely used in wires and cables for many years. However, the problem of melting drip and efficient flame retardance has not been effectively solved. The combination of expandable graphite (EG), ammonium polyphosphate (APP), and dipentaerythritol (DPER) as a flame retardant system for EVM rubber has been proven to be effective in preventing melting drip and improving flame retardance in this study. This is shown by limiting oxygen index (LOI) and vertical flammability (UL-94) tests. The thermal behavior of EVM treated with this instumescent-flame retardant (IFR) system was investigated by thermogravimetric analysis (TGA) experiments. The results indicated that the char residue of treated samples could reach up to 27.1% at 600°C, which is much higher than that of the untreated EVM. Scanning electron microscopy (SEM) micrographs of residue of treated and untreated EVM showed that the IFR system could promote formation of residual char which imparts the antidripping property to EVM. However, the mechanical properties, such as tensile strength (TS) and elongation at break (EB), decreased gradually with the increase of EG content. Compared to the EVM/APP/DPER system without EG, the TS decreased from 6.55 MPa to 6.13 MPa, while the EB decreased slightly from 570% to 558% when the EG content was 15 wt%.  相似文献   

19.
Organic vermiculite (OVMT) prepared from vermiculite (VMT), with high aspect ratio and orderly arranged platelets intercalated by octadecyl trimethyl ammonum bromide (OTAB), was used as a synergistic agent on the flame retardancy of a polypropylene/intumescent flame retardant (PP/IFR) system. The flammability and thermal stability of PP/IFR/OVMT composites were investigated by limiting oxygen index (LOI), UL-94 testing, cone calorimetry tests, and thermogravometric analysis. The results of LOI and UL-94 testing showed that low loading of OVMT improved the flame retardancy and retarded dripping for PP/IFR composites. OVMT, with 1% loading, increased the char residue of PP/IFR composites and could act as an effective additive for improvement in flame retardancy, which was confirmed by the cone data. The char layer morphological structures observed by scanning electron microscopy (SEM) showed that OVMT with 1% loading can promote formation of a continuous and compact intumescent char layer. Raman spectroscopy results indicated that the OVMT or its pyrolytic products led to a decrease in size of the carbonaceous micro-domain during combustion, resulting in formation of more compact charred layers. Thus, OVMT with 1% loading showed a synergistic effect with IFR in the combustion of the PP/IFR composites.  相似文献   

20.
In-situ X-ray computed tomography (XCT) imaging is employed to investigate the smoldering dynamics of biomass at the sub-millimeter scale. This technique provides simultaneous and spatially-resolved information about the gas temperature and the biomass density, thereby enabling tracking of the pyrolysis and char oxidation fronts. To achieve well-controlled heating and flow conditioning, oak biomass samples are instrumented above a diffusion flame inside a tube, with total oxygen concentrations of 6% and 11% per volume. Experiments are performed on a laboratory XCT system. The flow is diluted with Kr to increase X-ray attenuation in the gas phase thus allowing for simultaneous 3D measurements of sample density and surrounding temperature. XCT scans are acquired every 90 s at a spatial resolution of 135 µm. The high spatial resolution enables the volumetric visualization of the smoldering process that is associated with pyrolysis and char oxidation. These measurements show how the grain structure affects flame stabilization and induces fingering of the pyrolysis front, while crack formation accelerates the char oxidation locally. Evaluations of the sample mass via XCT are compared with load cell measurements, showing good agreement. A low-order model is developed to evaluate the propagation speeds of pyrolysis and oxidation fronts from the X-ray data over time, and comparisons are made with the surface recess speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号