首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of chiral 1,3‐dioxolanes, 3 – 12 , with >99% ee values, have been synthesized. This is the first study of chiral ketalization reaction starting from ketones with aryl, monosubstituted aryl, and long alkyl chains (C11—AC13). Their ee values were determined by chiral high‐performance liquid chromatography (HPLC) on Chiralcel OD column, using their racemic 1,3‐dioxolanes rac‐ 3 – 12 , which were also synthesized for the first time. These chiral and racemic 1,3‐dioxolanes were characterizated by infrared, NMR (1H, 13C), mass spectrometry, elemental analysis, optical rotation, and chiral HPLC.  相似文献   

2.
The 1,3‐dipolar cycloaddition reactions of 2‐diazocyclohexane‐1,3‐dione ( 7a ; Table 1) and of alkyl diazopyruvates ( 11a – e ; Table 3) to 2,3‐dihydrofuran and other enol ethers have been investigated in the presence of chiral transition metal catalysts. With RhII catalysts, the cycloadditions were not enantioselective, but those catalyzed by [RuIICl2( 1a )] and [RuIICl2( 1b )] proceeded with enantioselectivities of up to 58% and 74% ee, respectively, when diazopyruvates 11 were used as substrates. The phenyliodonium ylide 7c yielded the adduct 8a in lower yield and poorer selectivity than the corresponding diazo precursor 7a (Table 2) upon decomposition with [Ru(pybox)] catalysts. This suggests that ylide decomposition by RuII catalysts, contrary to that of the corresponding diazo precursors, does not lead to Ru‐carbene complexes as reactive intermediates. Our method represents the first reproducible, enantioselective 1,3‐cycloaddition of these types of substrates.  相似文献   

3.
(E)‐2‐[2‐(1‐Substituted ethylidene)hydrazinyl]‐5‐oxo‐9b‐hydroxy‐5,9b‐dihydroindeno[1,2‐d][1,3]‐thiazine‐4‐carbonitriles and (E)‐5‐oxo‐[(E)‐(1‐substituted ethylidene)hydrazinyl]‐2,5‐dihydroindeno[1,2‐d][1,3]thiazine‐4‐carbonitriles have been obtained from the reaction of 2‐(substituted ethylidene)hydrazinecarbothioamides with 2‐(1,3‐dioxo‐2,3‐dihydro‐1H‐inden‐2‐ylidene)propanedinitrile ( 1 ) in ethyl acetate solution. However, (Z)‐6′‐amino‐1,3‐dioxo‐3′‐substituted‐2′‐[(E)‐(1‐phenylethylidene)hydrazono]‐1,2′,3,3′‐tetrahydrospiro(indene‐2,4′‐[1,3]thiazine)‐5′‐carbonitriles were observed during the reaction of N‐substituted‐2‐(1‐phenylethylidene)hydrazinecarbothioamides with ( 1 ). The structure assignment of products has been confirmed on the basis of 1H‐, 13C‐NMR, and mass spectrometry, as well as theoretical calculations.  相似文献   

4.
The kinetics of the reactions of 1,2‐diaza‐1,3‐dienes 1 with acceptor‐substituted carbanions 2 have been studied at 20 °C. The reactions follow a second‐order rate law, and can be described by the linear free energy relationship log k(20 °C)=s(N+E) [Eq. (1)]. With Equation (1) and the known nucleophile‐specific parameters N and s for the carbanions, the electrophilicity parameters E of the 1,2‐diaza‐1,3‐dienes 1 were determined. With E parameters in the range of ?13.3 to ?15.4, the electrophilic reactivities of 1 a–d are comparable to those of benzylidenemalononitriles, 2‐benzylideneindan‐1,3‐diones, and benzylidenebarbituric acids. The experimental second‐order rate constants for the reactions of 1 a – d with amines 3 and triarylphosphines 4 agreed with those calculated from E, N, and s, indicating the applicability of the linear free energy relationship [Eq. (1)] for predicting potential nucleophilic reaction partners of 1,2‐diaza‐1,3‐dienes 1 . Enamines 5 react up to 102 to 103 times faster with compounds 1 than predicted by Equation (1), indicating a change of mechanism, which becomes obvious in the reactions of 1 with enol ethers.  相似文献   

5.
The Li derivative of (S)‐4‐isopropyl‐3‐[(methylthio)methyl]‐5,5‐diphenyloxazolidin‐2‐one (Li‐ 2 ; synthetically equivalent to a chiral formyl anion) adds to enones and enoates in a 1,4‐fashion. Best results are obtained with 1,3‐diarylpropenones (chalcones; Scheme 2), trityl enones, and 2,6‐di(tert‐butyl)‐4‐methoxyphenyl cinnamates (Scheme 3), with yields up to 80% and diastereoselectivities up to and above 99 : 1 of the products ( 5a – f and 8a , b , e ) containing three stereogenic centers! X‐Ray crystal‐structure analysis reveals that the C,C‐bond formation occurs preferentially with relative topicity ul (Re/Si; Fig. 2). The MeS group of the 1,4‐adducts can be replaced by RO groups in Hg2+‐assisted substitutions, with subsequent removal and facile recovery of the chiral auxiliary (Schemes 46). 4‐Hydroxycarbonyl derivatives (‘homoaldols') and mono‐, di‐, and trisubstituted 1,4‐diols are, thus, accessible in enantiomerically pure forms (cf. 15, 16 , and 18 – 20 ).  相似文献   

6.
The effect of additional Cu(II) ions on the rate of transformation of S‐(2‐oxotetrahydrofuran‐3‐yl)‐N‐(4‐methoxyphenyl)isothiouronium bromide ( 1 ) into 5‐(2‐hydroxyethyl)‐2‐[(4‐methoxyphenyl)imino]‐1,3‐thiazolidin‐4‐one ( 2 ) has been studied in aqueous buffer solutions. The reaction acceleration in acetate buffers is caused by the formation of a relatively weakly bonded complex (Kc = 600 L·mol?1) of substrate with copper(II) acetate in which the Cu(II) ion acts as a Lewis acid coordinating the carbonyl oxygen and facilitating the intramolecular attack, leading to the formation of intermediate T±. The formation of the complex of copper(II) acetate with free isothiourea in the fast preequilibrium (Kc) is followed by the rate‐limiting transformation (kCu) of this complex. At the high concentrations of the acetate anions, the reaction is retarded by the competitive reaction of these ions with copper(II) acetate to give an unreactive complex [Cu(OAc)4]2?. The influence of Cu(II) ions on the stability of reaction intermediates and the leaving group ability of the alkoxide‐leaving group compared to the Cu(II)‐uncatalyzed reaction is also discussed.  相似文献   

7.
Complexes with Macrocyclic Ligands. V Dinuclear Copper(II) Complexes with Chiral Macrocyclic Ligands of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of four chiral, dinuclear, macrocyclic, cationic copper(II) complexes, [Cu2(Lm,n)]2+ ( 1 – 4 ), are described. The two symmetrical compounds [Cu2(L2,2)][ClO4]2 ( 1 and 2 ) were synthesized in a one‐step reaction from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐perchlorate and the chiral diamine (1S,2S)‐1,2‐diphenylethylenediamine (synthesis of 1 ) and (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 2 ), respectively. For the synthesis of the two unsymmetrical compounds [Cu2(LPh,n)][ClO4]2 ( 3 and 4 ) the mononuclear, neutral copper(II) complex [CuLPh] ( 5 ) [synthesized from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐acetate and 1,2‐phenylenediamine] was reacted with (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 3 ) and (S)‐1,1′‐binaphthyl‐2,2′‐diamine (synthesis of 4 ), respectively. The structures of the two unsymmetrical copper(II) compounds ( 3 and 4 ) were determined by X‐ray diffraction.  相似文献   

8.
The formal 1,3‐cycloaddition of 2‐diazocyclohexane‐1,3‐diones 1a –1 d to acyclic and cyclic enol ethers in the presence of RhII‐catalysts to afford dihydrofurans has been investigated. Reaction with a cis/trans mixture of 1‐ethoxyprop‐1‐ene ( 13a ) yielded the dihydrofuran 14a with a cis/trans ratio of 85 : 15, while that with (Z)‐1‐ethoxy‐3,3,3‐trifluoroprop‐1‐ene ( 13b ) gave the cis‐product 14b exclusively. The stereochemical outcome of the reaction is consistent with a concerted rather than stepwise mechanism for cycloaddition. The asymmetric cycloaddition of 2‐diazocyclohexane‐1,3‐dione ( 1a ) or 2‐diazodimedone (=2‐diazo‐5,5‐dimethylcyclohexane‐1,3‐dione; 1b ) to furan and dihydrofuran was investigated with a representative selection of chiral, nonracemic RhII catalysts, but no significant enantioselectivity was observed, and the reported enantioselective cycloadditions of these diazo compounds could not be reproduced. The absence of enantioselectivity in the cycloadditions of 2‐diazocyclohexane‐1,3‐diones is tentatively explained in terms of the Hammond postulate. The transition state for the cycloaddition occurs early on the reaction coordinate owing to the high reactivity of the intermediate metallocarbene. An early transition state is associated with low selectivity. In contrast, the transition state for transfer of stabilized metallocarbenes occurs later, and the reactions exhibit higher selectivity.  相似文献   

9.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

10.
The [3,3′(4H,4′H)‐bi‐2H‐1,3‐oxazine]‐4,4′‐diones 3a – 3i were obtained by [2+4] cycloaddition reactions of furan‐2,3‐diones 1a – 1c with aromatic aldazines 2a – 2d (Scheme 1). So, new derivatives of bi‐2H‐1,3‐oxazines and their hydrolysis products, 3,5‐diaryl‐1H‐pyrazoles 4a – 4c (Scheme 3), which are potential biologically active compounds, were synthesized for the first time.  相似文献   

11.
The enantiopure ketoimine of benzil – the ( S )‐(‐)‐(1‐phenylethylimino)benzyl phenyl ketone ( 1 ) obtained under microwave irradiation in solvent‐free conditions – reacts with Na2[PdCl4] to give the new chiral mono‐ and dinuclear Pd‐complexes 2 and 3 , which have been partly characterized by IR, 1H and 13C NMR spectroscopies along with MS‐FAB+ spectrometry. The crystal and molecular structures of both complexes has been fully confirmed by single‐crystal X‐ray studies. On the other hand, investigations in vitro of 2 and 3 have displayed growth inhibition against different classes of cancer: leukemia (K‐562 CML), colon cancer (HCT‐15), cancer breast (MCF‐7), central nervous system (U‐251 Glio) and prostate cancer (PC‐3) cell lines.  相似文献   

12.
A novel NHC–Pd complex of 1,3‐bis (4‐ethoxycarbonylphenyl) imidazolium chloride has been synthesized and characterized by 1H NMR, 13C NMR, IR and X‐ray single‐crystal diffraction studies. TG analysis shows that the NHC‐Pd complex is stable under 208 °C. The catalytic activities have been explored for the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone. The result indicates that the novel NHC‐Pd complex can achieve better catalytic activity than the Pd‐phosphine catalysts in the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone.  相似文献   

13.
Structures of cyclic 2‐(3‐oxo‐3‐phenylpropyl)‐substituted 1,3‐diketones 4a – c were determined by 17O‐NMR spectroscopy and X‐ray crystallography. In CDCl3 solution, compounds 4a – c form an eight‐membered‐ring with intramolecular H‐bonding between the enolic OH and the carbonyl O(11)‐atom of the phenylpropyl group, as demonstrated by increased shielding of specifically labeled 4a – c in the 17O‐NMR spectra (Δδ(17O(11))=36 ppm). In solid state, intermolecular H‐bonding was observed instead of intramolecular H‐bonding, as evidenced by the X‐ray crystal‐structure analysis of compound 4b . Crystals of compound 4b at 293 K are monoclinic with a=11.7927 (12) Å, b=13.6230 (14) Å, c=9.8900 (10) Å, β=107.192 (2)°, and the space group is P21/c with Z=4 (refinement to R=0.0557 on 2154 independent reflections).  相似文献   

14.
The novel chiral P,N‐ligand 2‐[2‐(diphenylphosphino)phenyl]‐5,6‐dihydro‐4‐phenyl‐4H‐1,3‐oxazine ( 4 ) was synthesized. The corresponding {dihydro[(phosphino‐ϰP)aryl]oxazine‐ϰN} (η3‐diphenylallyl)palladium(II) hexafluorophosphate 5 and the analogous [Pd(η3‐1,3‐dimethylallyl)] complex 6 were investigated by X‐ray analysis and 1D‐ and 2D‐NMR spectroscopy. The complex 5 exists as `exo'‐syn‐syn isomer in the solid state (Fig. 1). In solution, the same isomer exceeds with 90%. The X‐ray crystal structure of 6 reveals that the dihydro(phosphinoaryl)oxazine ligand coordinates in a pseudo‐enantiomeric conformation compared with that of 5 (Fig. 3). A syn‐anti arrangement of the allyl substituents of 6 is favored in the solid state. 1H‐NMR Spectroscopic investigations suggest that the auxiliary 6 adopts two conformations. This conformational instability together with `exo'/`endo' and syn/anti isomerization leads to the formation of 6 isomers (Fig. 4). The asymmetric allylic substitution reaction of 1,3‐diphenylallyl acetate with dimethyl malonate in the presence of 4 proceeds with a selectivity of 99% ee. The ee induced by 4 in the catalytic allylic substitution of 1‐methylbut‐2‐enyl acetate is moderate (54%).  相似文献   

15.
A new type anion receptors containing indeno[2′,1′:5,6]pyrido[2,3‐d]pyrimidine have been synthesized via three‐component reaction of aldehyde, 6‐aminopyrimidine‐2,4‐dione, and 1,3‐indanedione in aqueous media. The binding properties of the receptors with anions such as F?, Cl?, Br?, AcO?, HSO4?, and H2PO4? have been investigated by UV–vis spectroscopy methods. The results have shown that receptors have good selectivity to F? and AcO?, and a 1:1 stoichiometry complex has been formed between compounds and anions.  相似文献   

16.
A series of variously substituted 1,3‐thiazole heterocyclic compounds ( 3a – 3d ) were prepared by base‐catalyzed S‐cyclization of corresponding 2,4‐dichloro‐N‐{[(4‐substitutedphenyl)amino]carbonothioyl}benzamide ( 2a – 2d ) with acetophenone in the presence of bromine. The structure of all compounds was established by IR, 1H‐NMR, 13C‐NMR, elemental analysis, and X‐ray crystallographic analysis.  相似文献   

17.
Chiral 2‐amino‐butanols ( 4 and 5 ) were obtained via the isolation of diastereomeric salt. Then, chiral compounds ( 6 – 9) were synthesized by a sequential procedure involving condensation of chiral 2‐amino‐butanol with ketone and dichloroacetyl chloride. All the compounds were characterized by IR, 1H NMR, 13C NMR, and element analysis. The absolute configurations of ( S )‐ 8 was determined by X‐ray crystallography.  相似文献   

18.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Functionalised bicyclic exo‐glycals are readily obtained by base‐catalysed (typically MeONa in MeOH) alkynol cycloisomerisation of ethynylated cyclic saccharides. Thus, base treatment of the phenylethynyl‐ and halogenoethynylated 1‐O‐acetyl‐ribofuranoses 22 – 24 and the 4‐ethynylated 1‐thioglucopyranosides 30 – 33 gave – after deacetylation – selectively the (Z)‐configured exocyclic enol ethers 26 – 28 (84–91%) and 34 – 37 (63–76%), respectively, resulting from a trans‐5‐exo‐dig cyclisation. The ring closure to the trans‐dioxahexahydroindans 34 – 37 is favoured by a concerted intramolecular protonation of the intermediate vinyl anion by the neighbouring HO C(3). Cycloisomerisation of the 6‐O‐acetyl‐4‐(phenylethynyl)‐1‐thio‐α‐D ‐glucopyranoside 39 occurred via the corresponding phenylethynylated allenes to provide the galacto‐configured (Z)‐ and (E)‐cis‐dioxahexahydroindans 40 (30%) and 41 (51%). Surprisingly, the HO C(4) unprotected α‐d‐ galactopyranosyl‐buta‐1,3‐diyne 15 and the β‐D ‐glucopyranosyl‐buta‐1,3‐diyne 51 (and its 2‐bromoethynyl analogue) undergo a 6‐exo‐dig ring closure to the 2,5‐dioxabicyclo[2.2.2]octanes 16 – 19 and 52 / 53 , respectively, the ring closure requiring a boat conformation (B1,4 for 15 , 1,4B for 51 ). Ring strain (anti‐reflex effect) prevents an alkynol cycloisomerisation of 4‐(phenylbuta‐1,3‐diynyl, bromoethynyl, or iodoethynyl)levoglucosan 56 – 59 , and 56 reacted by elimination to the hex‐1‐ene‐3,5‐diyne 59 (82%), while isomerisation of 57 and 58 led to epimeric mixtures of the haloallenes 60 (82%) and 61 (68%).  相似文献   

20.
A series of bis‐thiourea‐functionalized [n]polynorbornane hosts ( 1 – 6 ) with increasing size were synthesized and their anion‐binding properties were evaluated by using 1H NMR spectroscopic titration and Job’s plot analysis. The larger bis‐thiourea‐[3]polynorbornane scaffolds 4 and 5 bound acetate in a 1:1 (cooperative) arrangement, whereas the corresponding smaller norbornane host 2 , identical in preorganization, bound acetate in a 1:2 (independent) arrangement. In contrast, the size of the framework had no influence on the binding of dihydrogenphosphate. These results clearly highlight the subtle influence that the framework itself can have on host–guest interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号