首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu-ZSM-5 catalysts for the selective reduction of NO with propane were obtained by ion exchange between H-ZSM-5 zeolite and an aqueous or aqueous ammonia solution of a copper salt (acetate or nitrate). Their Cu/Al values (%) defined as 2 × 100 (Cu : Al), where Cu : Al is the copper-to-aluminum atomic ratio, were determined as a function of ion exchange pH, which was varied by changing the copper salt and solution concentration. Cu/Al is primarily determined by the chemical nature of the starting copper salt. For a given salt, it is governed by the salt concentration in the solution. At a fixed salt concentration, Cu/Al is always larger for copper acetate than for copper nitrate. It can be raised to ≫100% by using an aqueous ammonia solution of a copper salt. Furthermore, it increases with increasing Si/Al in the starting zeolite if the other ion exchange conditions are equal. Irrespective of preparation conditions, the catalytic activity of Cu-ZSM-5 grows in proportion to Cu/Al. It peaks at Cu/Al ∼ 100% and then remains constant up to Cu/Al ∼ 400%. In order to achieve Cu/Al ∼ 100%, it is most appropriate to use a copper acetate solution.__________Translated from Kinetika i Kataliz, Vol. 46, No. 4, 2005, pp. 652–656.Original Russian Text Copyright © 2005 by Tsikoza, Matus, Ismagilov, Sazonov, Kuznetsov.  相似文献   

2.
Cu–Al spinel oxide, which contains a small portion of the CuO phase, has been successfully used in methanol steam reforming (MSR) without prereduction. The omission of prereduction not only avoids the copper sintering prior to the catalytic reaction, but also slows down the copper‐sintering rate in MSR. During this process, the CuO phase can initiate MSR at a lower temperature, and CuAl2O4 releases active copper gradually. The catalyst CA2.5‐900, calcined at 900 °C with n(Al)/n(Cu)=2.5, has a higher CuAl2O4 content, higher BET surface area, and smaller CuAl2O4 crystal size. Its activity first increases and then decreases during MSR. Furthermore, both fresh and regenerated CA2.5‐900 showed better catalytic performance than the commercial Cu–Zn–Al catalyst.  相似文献   

3.
Commercial pure wrought tungsten and 1060 pure aluminum can be joined by using induction‐heat deposition (IHD) welding with commercial pure copper transitional layer. The microstructures of W/Cu/Al interfaces have been studied by means of scanning electron microscope, energy dispersive X‐ray, and X‐ray diffraction. Results show that copper as the transitional metal could form good interfaces with both tungsten and aluminum by IHD under proper processing parameters. The metallic bonding of W/Cu obtained by Cu and W mutual diffusing at a quite limited range without any intermetallic compounds, while eutectic of α(Al)/θ(CuAl2) makes up Cu/Al interface. The average shear strength of W/Cu and Cu/Al interfaces are about 170 MPa and 55 Mpa, respectively, at room temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The effects of ion-exchange conditions and the zeolite Si/Al atomic ratio on the copper contents of Cu(80% ZSM-5 + 20%Al2O3) catalysts and on the catalytic activity in the selective reduction of NO with propane were studied. It was found that the synthesis of these catalysts exhibited the same behavior as in the case of bulk CuZSM-5 catalysts containing no Al2O3. The copper contents of the catalysts depend on the pH and concentration of copper solutions used for ion exchange, and the maximum activity (NO conversion) is attained even at an exchange level (Cu/Al) close to 100% regardless of pH and the zeolite Si/Al atomic ratio. At 300–400°C, the activity of the test catalysts is 10–20% lower than the activity of CuZSM-5 catalysts containing no Al2O3at equal exchange levels. This difference in the activity almost disappeared as the reaction temperature was increased. It was also found that in the Cu(80% ZSM-5 + 20%Al2O3) catalysts, an exchange level close to that in CuZSM-5 catalysts is attained by ion exchange from more concentrated solutions. An increase in the exchange level to 100% (by an increase in the pH of a copper solution from 6 to 10, as in the case of CuZSM-5 catalysts), had no effect on the activity.  相似文献   

5.
CeO2改性Cu/Al2O3催化剂上甲醇水蒸气重整制氢   总被引:6,自引:0,他引:6  
研究CeO2改性Cu/Al2O3催化剂上甲醇水蒸气重整制氢反应过程,得到低温活性、氢选择性和稳定性较好的催化剂.Cu/Al2O3催化剂中添加CeO2提高了催化剂的活性和稳定性,当CeO2质量分数为20%时,催化剂活性表现最佳.在反应温度250 ℃,水醇摩尔比为1.0,液体空速为3.28 h -1条件下,甲醇转化率为95.5%,氢气选择性为100%.此外,CeO2通过促进水气转化反应降低了重整气中CO的含量.Cu/CeO2/Al2O3催化剂在200 h的寿命实验中,活性仍保持在90.0%以上,而Cu/Al2O3催化剂在100 h的寿命实验中,活性已很快下降.XRD和TPR分析及表面元素分布结果表明,铜和铈相互作用促进了铜在催化剂表面的高度分散,阻止了铜晶粒团聚、烧结,促使铜晶粒细小化,促进了铜的还原,改善了Cu/CeO2/Al2O3催化剂的性能.  相似文献   

6.
以氢氧化铜、醋酸镍和拟薄水铝石为原料,通过固相法合成了Cu-Ni-Al尖晶石催化剂。采用N2物理吸附、XRD、H2-TPR和XPS等表征方法,研究Cu/Ni/Al的物质的量比和焙烧温度对催化剂的比表面积、物相、还原性能以及表面性质的影响,并以甲醇水蒸气重整制氢为探针反应,考察催化剂的缓释催化性能。结果表明,随着焙烧温度的升高,Cu-Ni-Al催化剂的尖晶石含量增加,但尖晶石晶粒增大,且比表面积下降。不同的焙烧温度和Cu/Ni/Al物质的量比,所得催化剂的比表面积、还原性能和表面性质不同,从而表现出不同的缓释催化性能。与计量比Cu/Al=1∶2的合成比较,Cu/Al=1∶3形成了非计量比的富Al尖晶石固溶体,生成的晶体粒子小、比表面积和孔容大、难还原的尖晶石部分增多,呈现出更好的缓释催化性能。甲醇制氢反应性能评价结果显示,Cu-Ni-Al尖晶石在反应条件下逐渐释放活性铜而催化反应的进行,其中,CNA3-1000催化剂表现中最高的催化活性和稳定性。  相似文献   

7.
刘晶  任宏伟  樊金串  黄伟 《分子催化》2019,33(2):166-173
采用完全液相法制备Cu-Zn-Al浆状催化剂,利用XRD、H2程序升温还原、N2吸附-脱附、XPS对催化剂进行表征,并在浆态床反应器中评价其CO加氢性能,考察了前驱体的热处理条件(常压、中压和密闭高压)对催化剂结构和性能的影响.结果表明,常压热处理所制催化剂,比表面积较大,活性物种的分散度和表面铜锌比均较高,有利于反应气体的吸附和扩散,CO加氢活性较高;采用加压热处理时,Cu晶粒较大,且有尖晶石相的生成,增强了Cu、Zn、Al物种之间的相互作用,影响了Cu物种的还原能力和催化剂的表面酸性,使催化剂具有一定的生成低碳醇能力.  相似文献   

8.
Cu2ZnSnS4 (CZTS) active material-based resistive random-access memory (RRAM) devices are investigated to understand the impact of three different Cu, Ag, and Al top electrodes. The dual resistance switching (RS) behaviour of spin coated CZTS on ITO/Glass is investigated up to 102 cycles. The stability of all the devices (Cu/CZTS/ITO, Ag/CZTS/ITO, and Al/CZTS/ITO) is investigated up to 103 sec in low- (LRS) and high- (HRS) resistance states at 0.2 V read voltage. The endurance up to 102 cycles with 30 msec switching width shows stable write and erase current. Weibull cumulative distribution plots suggest that Ag top electrode is relatively more stable for set and reset state with 33.61 and 25.02 shape factors, respectively. The charge carrier transportation is explained by double logarithmic plots, Schottky emission plots, and band diagrams, substantiating that at lower applied electric field intrinsic copper ions dominate in Cu/CZTS/ITO, whereas, at higher electric filed, top electrodes (Cu and Ag) dominate over intrinsic copper ions. Intrinsic Cu+ in CZTS plays a decisive role in resistive switching with Al electrode. Further, the impedance spectroscopy measurements suggest that Cu+ and Ag+ diffusion is the main source for the resistive switching with Cu and Ag electrodes.  相似文献   

9.
 采用连续流动固定床石英反应器,在反应气体为0.1%NO,0.1%C3H6,2%O2,流量为500ml/min以及催化剂装量为0.1g的条件下,考察了Cu-Al-MCM-41的Si/Al比值对贫燃条件下NO选择性还原活性的影响.结果表明,当Cu交换度低于100%时,随Si/Al比值的增加,NO的最大转化率增加.TPD和TPR的研究结果表明,不同的Si/Al比值,改变了Cu在分子筛结构中的化学微环境,使活性中心Cu2+的浓度和性质发生变化,从而影响其对NO的转化效率.  相似文献   

10.
The electrochemical behaviors of pure Al, Al–6%Si, Al–3%Cu, and Al–3.7%Cu–0.9%Mg–0.8%Pb–0.6%Fe alloys were investigated in the chloroaluminate ionic liquids 1-butyl-3-methylimidazolium chloride [BMIm]Cl/AlCl3 (40/60 mol%) and 1-ethyl-3-methylimidazolium chloride [EMIm]Cl/AlCl3 (40/60 mol%). Electrolytic extraction of copper from Al–Cu alloys in the employed ionic liquids was explored. The alloys were anodically dissolved in the ionic liquids and then pure copper was recovered under potentiostatic conditions. Due to the large difference between the deposition potentials of Cu and Al, pure Cu can be obtained without Al contamination. Electrorefining of Al–3%Cu and Al–6%Si alloys was also investigated in [BMIm]Cl/AlCl3 (40/60 mol%) at room temperature. High purity aluminum deposits were obtained with significantly low energy consumption of about 2 kWh/kg of Al.  相似文献   

11.
Addition of CO on Cu-exchanged zeolite was investigated by means of quantum chemical calculations based on density functional theory. The aim of this investigation was to get insights about changes of electronic properties of a copper site with zeolite composition by using a CO probe molecule. Calculated nu(CO) frequency values show that various Si/Al ratios of faujasite zeolite reproduce the expected experimental decrease of the nu(CO) values with decreasing Si/Al ratio. These calculations predict that H/Na ratio variations also induce changes in the nu(CO) values. These results illustrate that different compositions of the zeolite change the electronic properties of copper that are reflected in the nu(CO) frequency values. DFT results showed also that different structures and CO adsorption energies are obtained due to various Si/Al and H/Na ratios of the zeolite. Finally, these calculations evidence the possibility for CO to be connected at the same time to Cu(I) and to a close Na cation, Cu being at site II and Na at site II in Cu(I)-exchanged faujasite. A DRIFT experiment on two samples of faujasite, Cu(28)H(51)NaY and Cu(25)H(0)NaY, supports nu(CO) displacements to higher energy values with increasing H/Na ratio.  相似文献   

12.
The effects of ion-exchange conditions (the pH, the copper concentration in solution, and the solution-to-zeolite volume ratio) and the Si/Al atomic ratio of HZSM-5 zeolite on the concentration and state of copper in bulk CuZSM-5 catalysts and on the catalytic activity in the selective reduction of NO with propane were studied. It was found that the concentration and state of copper in the catalysts essentially depend on the pH of the solution used for ion exchange and on the copper concentration in this solution. An increase in the solution-to-zeolite volume ratio has almost no effect on the above characteristics. Regardless of the Si/Al atomic ratio of zeolite and of the pH of solution, a maximum activity (NO conversion) of the resulting catalyst is attained even at an exchange level (Cu/Al) close to 100% (80–140%). The absolute value of this catalytic activity depends only on the reaction temperature and is equal to 22–31% at 300°C or 85–97% at 400–500°C. The above exchange level is maximally attainable at pH 6 in the chosen range of copper acetate concentrations in solution (2–10 mg/ml accounted as CuO). An increase in the pH of ion exchange up to 100% allows a wider variation in the exchange level and the state of copper in the zeolite with the same range of copper concentration in the solution. However, at Cu/Al 100% (up to 430%), the catalyst activity is independent of the exchange level. The state of copper in freshly prepared samples affects the stability of the catalysts in storage. In turn, the state of copper depends on ion-exchange conditions and the Cu/Al ratio.  相似文献   

13.
Interlayer cations in the sodium form of the aluminosilicate montmorillonite (Mt) have been exchanged by mixed, bulky, polynuclear hydroxo cations (Al: (Fe + Cu) = 10, Cu: Fe = 0–1, OH: (Fe + Cu + Al) = 2), and the product has been heat-treated to obtain Fe-, Fe-Al-, and Fe-Cu-Al-containing materials (Fe-Cu-Al-Mt). The chemical composition and textural characteristics of the materials depend on the Cu: Fe molar ratio. The catalytic properties of the materials in the oxidation of acid chrome dark blue (ACDB) azo dye with hydrogen peroxide have been investigated. The activity and stability of the Fe-Cu-Al-Mt systems are determined by the quantity of copper and iron atoms introduced into the structure of the material. As the iron ion content is increased, the specific catalytic activity of the system increases and the system becomes less resistant to the leaching of iron ions into the solution. Raising the copper content of the system above 0.07 wt % reduces its activity and stability. The effects of the catalyst content, pH of the solution being oxidized, and reactant ratio (H2O2: ACDB) on the reaction rate have been studied. The ACDB oxidation conditions have been optimized.  相似文献   

14.
The effect of Cu/Al molar ratio on the high-temperature adsorption characteristics of CO2 on the mixed oxides of Cu–Al hydrotalcite skeletal structure has been studied by thermogravimetry. The Cu/Al molar ratio of the hydrotalcites synthesized was varied between 1.0 and 3.0, and the adsorption temperature ranged from ambient to 600 °C. The hydrotalcite with Cu/Al molar ratio of 2.0 was found to be the most suitable adsorbent for high-temperature CO2 adsorption, in both the capacity and the rate of adsorption. The activation energy values suggested that the physical adsorption dominates at low temperatures (<400 °C) and the chemisorption dominates at high temperatures (>400 °C).  相似文献   

15.
Higher alcohol has been considered as a potential fuel additive. Higher alcohol, including C2–C4 alcohol was synthesized by catalytic conversion of syngas (with a ratio of CO/H2?=?1) derived from natural gas over modified Cu/ZnO/Al2O3 catalyst. Modified Cu/ZnO/Al2O3 catalysts promoted by alkali metal (Li) for higher alcohol synthesis (HAS) were prepared at different pH (6, 6.5, 7, 8, and 9) by co-precipitation to control Cu surface area and characterized by N2 physisorption, XRD, SEM, H2-TPR and TPD. The HAS reaction was carried out under a pressure of 45 bar, GHSV of 4000 h?1, ratio of H2/CO?=?1, and temperature ranges of 240 and 280 °C. It was found that the malachite phase of copper causes the size of copper to be small, which is suitable for methanol synthesis. Methanol and HAS share a common catalytic active site and intermediate. It was also found that the productivity to higher alcohol was correlated with Cu surface area.  相似文献   

16.
甲醇水蒸气重整制氢Cu/ZnO/Al2O3催化剂的研究   总被引:7,自引:5,他引:7  
燃料电池作为一种无污染、高效率的能源引起世界各大汽车公司的广泛关注[1,2]。用于燃料电池的燃料目前研究较多的是氢气,用氢气作燃料存在储存、安全、运输等问题,寻求合适贮氢方法或替代燃料,实现车载制氢是解决问题的办法。甲醇作为液体燃料,因具有高能量密度,低碳含量,以及运输和贮存等优势成为车载制氢的理想燃料,甲醇水蒸气重整制氢反应也成为研究的热点[3~10]。车载制氢对甲醇水蒸气重整制氢反应体系中的产氢速率,氢气和CO的含量都有一定的要求。尤其对CO含量要求更为苛刻,因CO易引起燃料电池阳极催化剂中毒[11,12]。因此,开…  相似文献   

17.
A study of the reduction of CuO in a ternary oxide system (Cu:Zn:Al, atomic ratio 62:14:24) demonstrated that at lower temperatures it occurred in two stages, whereas at higher temperatures it was no longer possible to display the formation of Cu2O. The rate of reduction of CuO was strongly reduced on decreasing the partial pressure of hydrogen, while the presence of CO2 stabilized the Cu2O, delaying the reduction to copper. On the basis of simpler systems it was possible to demonstrate the activating effect of Al2O3 and the delaying effect of ZnO on the reduction of CuO.  相似文献   

18.
Commercial H-ZSM5 zeolites with a Si/Al ratio equal to 25 and 75 have been exchanged using copper acetate aqueous solutions with different concentrations. Copper saturation is reached at the 130 and 230% level of Cu exchange for Si/Al equal to 25 and 75, respectively, although FTIR spectra showed that a fraction of Al-OH exchange positions is still available. Catalytic activity experiments of NO decomposition have been carried out at 450°C in a fixed bed reactor. Catalysts have been characterized with H2 TPR and NO adsorption experiments at 120°C. All samples are partially reduced upon thermal treatment under inert flow (He) leading to the formation of Cu+-containing sites in addition to a fraction of differently reduced copper species. The Cu+-containing sites, also responsible for NO adsorption and subsequent production of N2O at 120°C, have been proposed to be the active centers. A quantitative estimation of these species, likely having multi-ionic structure, has been provided.  相似文献   

19.
采用共沉淀法制备Cu/Zn/Al类水滑石前驱体,并用配体三乙醇胺(TEA)对其进行改性。前驱体经焙烧后成功获得TEA改性的Cu/Zn/Al催化剂。借助XRD、FTIR、H2-TPR、CO-TPD及SEM等方法对催化剂进行表征,并将其应用于合成气制备异丁醇的活性评价反应中。结果表明,TEA的加入能够改变催化剂形貌,使催化剂表面呈松散絮状结构。TEA可使类水滑石前驱体的结构发生膨胀,其焙烧获得的催化剂中有明显的晶格扭曲和晶格缺陷。TEA对催化剂结构的改变有利于Cu/Zn/Al催化剂中CuO组分的氢还原和CO在催化剂表面的化学吸附,从而促进异丁醇的合成。当TEA的添加比例为nTEA/nZn=0.5时,TEA改性的Cu/Zn/Al催化剂的催化效果达到最佳。  相似文献   

20.
Selective production of hydrogen by oxidative steam reforming of methanol (OSRM) was studied over Cu/SiO2 catalyst using fixed bed flow reactor. Textural and structural properties of the catalyst were analyzed by various instrumental methods. TPR analysis illustrates that the reduction temperature peak was observed between 510?K and 532?K at various copper loadings and calcination temperatures and the peaks shifted to higher temperature with increasing copper loading and calcination temperature. The XRD and XPS analysis demonstrates that the copper existed in different oxidation states at different conditions: Cu2O, Cu0, CuO and Cu(OH)2 in uncalcined sample; CuO in calcined sample: Cu2O and metallic Cu after reduction at 600?K and Cu0 and CuO after catalytic test. TEM analysis reveals that at various copper loadings, the copper particle size is in the range between 3.0?nm and 3.8?nm. The Cu particle size after catalytic test increased from 3.6 to 4.8?nm, which is due to the formation of oxides of copper as evidenced from XRD and XPS analysis. The catalytic performance at various Cu loadings shows that with increasing Cu loading from 4.7 to 17.3?wt%, the activity increases and thereafter it decreases. Effect of calcination shows that the sample calcined at 673?K exhibited high activity. The O2/CH3OH and H2O/CH3OH molar ratios play important role in reaction rate and product distribution. The optimum molar ratios of O2/CH3OH and H2O/CH3OH are 0.25 and 0.1, respectively. When the reaction temperature varied from 473 to 548?K, the methanol conversion and H2 production rate are in the range of 21.9–97.5% and 1.2–300.9?mmol?kg?1?s?1, respectively. The CO selectivity is negligible at these temperatures. Under the optimum conditions (17.3?wt%, Cu/SiO2; calcination temperature 673?K; 0.25 O2/CH3OH molar ratio, 0.5 H2O/CH3OH molar ratio and reaction temperature 548?K), the maximum hydrogen yield obtained was 2.45?mol of hydrogen per mole of methanol. The time on stream stability test showed that the Cu/SiO2 catalyst is quite stable for 48?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号