首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.

在长12 m的无缝不锈钢直管中,通过改变初始点火能量,探究了点火能对封闭管道内丙烷-空气混合气体爆炸传播特性和激波对管壁动态加载的影响。结果表明,初始点火能对预混气体爆炸火焰传播规律以及管壁的动态响应有显著影响:点火能越大,爆炸越剧烈,爆炸压力峰值压力和管壁最大应变就越大,且压力波和管壁应变的发展一致。火焰在传播过程中受到管道末端反射波的作用会发生短暂熄灭和复燃;管壁承受冲击波加载,应变信号主要分布在0~781.25 Hz,管壁最大应变率大于10-3 s-1,实验工况下管壁应变属动态响应。

  相似文献   

2.
The structure- and fluid-borne vibro-acoustic power spectra induced by turbulent fluid flow over the walls of a continuous 90° piping elbow are computed. Although the actual power input to the piping by the wall pressure fluctuations is distributed throughout the elbow, equivalent total power inputs to various structural wavetypes (bending, torsion, axial) and fluid (plane-waves) at the inlet and discharge of the elbow are computed. The powers at the elbow “ports” are suitable inputs to wave- and statistically-based models of larger piping systems that include the elbow. Calculations for several flow and structural parameters, including pipe wall thickness, flow speed, and flow Reynolds number are shown. The power spectra are scaled on flow and structural–acoustic parameters so that levels for conditions other than those considered in the paper may be estimated, subject to geometric similarity constraints (elbow radius/pipe diameter). The approach for computing the powers (called CHAMP – combined hydroacoustic modeling programs), which links computational fluid dynamics, finite element and boundary element modeling, and efficient random analysis techniques, is general, and may be applied to other piping system components excited by turbulent fluid flow, such as U-bends and T-sections.  相似文献   

3.
叶志伟  陈明  魏东  卢文波  刘涛  吴亮 《爆炸与冲击》2021,41(5):055201-1-055201-10
不耦合装药爆破孔壁压力峰值是控制岩体轮廓成形质量及进行非流固耦合爆破振动响应数值模拟分析的重要参数,本文采用实验方法研究了不耦合装药爆破的孔壁压力峰值:利用材质为20钢的无缝薄壁钢管模拟不耦合装药爆破炮孔,以高灵敏度、高精度的应变片为传感器,选用超动态应变仪采集钢管内置柱状炸药卷爆炸过程中钢管外壁产生的环向应变,应用动荷载作用下薄壁圆筒的动力响应计算方法,反演分析采集的钢管外壁环向应变数据,得到了爆破过程中空气冲击波作用于钢管内壁的冲击荷载压力峰值,间接测量了不耦合装药爆炸后的孔壁压力峰值。实验获得了6种不耦合装药工况下的爆破孔壁压力峰值测试数据,并计算了相应工况下实验值较准静态爆生气体压力的增大倍数,拟合结果表明压力增大倍数随不耦合系数的增大近似呈线性增长。同时也分析了部分试验工况下爆炸测试结果不理想的原因,研究成果可为轮廓爆破孔壁压力峰值的测试与计算提供参考。  相似文献   

4.
周宁  耿莹  冯磊  刘超  张冰冰  赵会军 《实验力学》2015,30(5):643-648
在两端封闭的无缝不锈钢管道中,利用压力传感器、应变片以及数据采集系统实验测试了不同点火能作用下,管道内甲烷-空气预混气体爆炸波发展规律及由此造成的管道外壁的动态响应。结果表明,点火能量越大,爆炸反应程度越剧烈,管道内最大爆炸压力就越大,管道薄壁的最大动态应变也越大,爆炸波发展就越迅速,并且管壁动态应变信号和压力波信号出现较好的一致性。本文结果可为油气长输管道的爆炸破坏效应研究提供一种新的思路和方法。  相似文献   

5.
Wall pressure fluctuations generated by turbulent boundary layers over a shallow cavity are studied experimentally in a low-speed wind tunnel facility. The scope of the present work is to characterize the propagation of the pressure perturbations at the wall by means of pressure cross-correlations and cross-spectra measured through a microphone pair translated along the cavity floor. It is found that the mechanism characterizing the pressure propagation close to the backward facing step and in the middle of the cavity is similar to what is commonly observed in equilibrium boundary layer being the convection velocity smaller than the external mean velocity. On the other hand, in the close vicinity of the forward-step, the hydrodynamic contribution of the pressure fluctuations is accompanied by a relevant acoustic effect characterized by a convection velocity close to the speed of sound. Furthermore, in the regions close to the two steps, the spectral decay of the coherence function, even though of exponential type, is faster than that obtained in the quasi-equilibrium region.  相似文献   

6.
In this work, the cross-statistics of acceleration and wall pressure fluctuations generated by an incompressible jet interacting with a tangential flat-plate are presented. The results are derived from an experimental test campaign on a laboratory-scale model involving simultaneous velocity and wall pressure measurements. The pressure footprint of the jet on the surface was measured through a cavity-mounted microphone array, whereas pointwise velocity measurements were carried out by a hot wire anemometer. The time derivative of the velocity signal has been taken as an estimation of the local acceleration of the jet. The multivariate statistics between acceleration and wall pressure are achieved through cross-correlations and cross-spectra, highlighting that the causality relation is more significant in the potential core where the Kelvin–Helmholtz instability is dominant. The application of a conditional sampling procedure based on wavelet transform allowed us to educe the acceleration flow structures related to the energetic wall-pressure events. The analysis revealed that, unlike the velocity, the acceleration signatures were detected only for positions where the jet had not yet impinged on the plate, their shape being related to a convected wavepacket structure.  相似文献   

7.
研究了流体负载下的无穷大双周期加强板, 在周期谐振力作用下的振动响应和声辐射,并提出了一种基于有限元和空间波数法的半解析半数值方法. 首先利用有限元的方法对周期结构进行单元离散, 并将结构对薄板的作用力等效为节点力的作用. 然后通过周期结构的振动方程, 结合薄板与结构的位移边界条件, 建立了节点力与薄板节点位移的函数方程. 最后应用空间波数法和傅里叶变换, 并采用数值计算的方法求解出薄板的节点位移, 得到了周期加强板关于离散节点位移的振动和辐射声压方程. 在数值算例中, 对该方法的正确性进行了验证, 并且分析了周期结构对薄板的振动和声辐射的影响.  相似文献   

8.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
液压管道在服役过程中受内压和循环弯曲载荷的共同作用.管道经常处于非比例循环加载状态,尤其是在管道接头位置处,容易产生棘轮行为,对管道的服役寿命有不利影响.因此,本文采用充液管道悬臂弯曲加载方式,对管道在接头位置处的棘轮响应进行研究。首先通过管材实验确定了材料的非线性等向/随动强化模型参数,并通过应变的实验测量结果与数值仿真结果的比较,验证了本构模型的有效性,然后建立了悬臂管道的有限元模型,模拟分析内压水平,内压小幅脉动,管道壁厚等因素对管道棘轮行为的影响.通过对带接头管道棘轮行为的研究分析,为进一步完善液压管道的设计,提高液压管道的可靠性,提供一定的理论基础.  相似文献   

10.
To facilitate the flow of heavy viscous oils in a pipe, a water-lubricated transport is generally used. The water migrates into the regions of high shear at the pipe wall where it lubricates the flow. The pumping pressures are balanced by wall shear stresses in the water, the process therefore requires pressures comparable to pumping water alone, with no dependence on the viscosity of the oil. This means that significant savings in pumping power can be derived from this process, provided that it is well monitored. Indeed, the flow of a water/oil mixture in a pipe has two main characteristics. First, the fluids can adopt different spatial arrangements called flow regimes, and second, the presence of a water layer at the channel wall significantly reduces the global pressure drop. In this paper, an experimental investigation was performed on the effect of pipe slope and fluids flow rates on flow regimes, pressure drop and interfacial instability.  相似文献   

11.
The results of an experimental investigation of spherical particles with different surface roughnesses rolling under their own weight down an inclined pipe wall in a Newtonian fluid at low Reynolds numbers, both with (friction should be taken into account) and without contact with the wall, are presented. It is shown that a fixed particle moves differently in different fluids with similar viscosities and densities. This fact, as well as the possibility of particle motion without contact with the wall, cannot be explained within the framework of the usual hydrodynamic theories. An example is the dependence of the particle motion on the static pressure.  相似文献   

12.
The sound field in a circular pipe generated by a concentric jet flow entering the pipe is studied. In the first case the air flow enters the pipe through a convergent nozzle only. In the second case a short diffuser is attached to the nozzle. When the diffuser half angle is small enough to ensure attached flow conditions, the sound pressure level in the duct is reduced over the entire frequency range measured. When the diffuser angle is increased up to the point where flow separation occurs, an increase in the duct sound pressure level is observed. It is shown by means of cross-correlation measurements involving the unsteady wall pressures in the diffuser and the sound pressure in the duct that the increased sound levels are in fact caused by the flow separation in the diffuser.  相似文献   

13.
热应力作用下结构声-振耦合响应数值分析   总被引:2,自引:0,他引:2  
考察飞行器结构热应力对结构及其内声腔声-振耦合特性的影响,建立考虑热应力因素的声-振耦合动力学有限元方程,对一个典型飞行器结构考虑热应力时的声-振耦合动力学响应进行分析。计算结果表明,热应力的存在对耦合模型的固有频率影响较小,受热应力影响较大的区域主要集中在机头及机身等部位,其固有振动特性有较明显的变化。通过对比结构加速度与内声腔声压级的响应结果发现,热应力的影响主要表现为系统响应幅值及峰值位置的改变。  相似文献   

14.
基于流体动力学软件Fluent,开展数值模拟,研究点火位置(距管左端壁面100、200和500 mm)、点火温度(1 000、1 500和2 000 K)和点火面积(管左端壁面处半径为50、35和20 mm的点火域)等点火条件对1 000 mm密闭管道中预混氢气/空气(H2/air)燃爆特性的影响。研究表明:点火位置距管左端壁面越远,中间节点处温度越高,温升越快;不同点火温度下管内最高温升速率基本同步,且提高点火温度,使得燃烧反应更剧烈,能提高管内气体温升速率,但却降低管内的压力峰值;点火面积越小,预混H2/air燃烧前期温升越快。当采用半径为35 mm的点火域和点火位置距管左端壁面100 mm的点火方式时,预混H2/air燃爆的各项参数相对较高。不同点火条件对密闭管内气体的动能和内能的影响规律类似于其对管内气体的流速和温度的影响规律,而对涡量的影响不明显。  相似文献   

15.
Two turbulent separated and reattaching flows produced by a sudden expansion in a pipe have been studied. The first was produced by a simple axisymmetric sudden enlargement from a nozzle of diameter 80 mm to a pipe of diameter 150 mm. The second was the flow at the same enlargement with the addition of a centerbody 90 mm downstream of the nozzle exit. Detailed measurements of velocity and skin friction (made primarily using pulsed wires) and of wall static pressure are presented. Without the centerbody the flow structure is similar to that observed in other sudden pipe expansions and over backward-facing steps. A turbulent free shear layer, bearing some similarity to that of a round jet, grows from separation and then reattaches to the pipe wall downstream. Reattachment is a comparatively gradual process, the shear layer approaching the wall at a glancing angle. The introduction of the centerbody causes the shear layer to curve towards the wall and reattach at a much steeper angle. Reattachment is much more rapid; gradients of skin friction and pressure along the wall are many times those without the centerbody. The high curvature of the shear layer strongly influences its turbulent structure, locally suppressing turbulence levels and reducing its growth rate.  相似文献   

16.
In this study pressure drop oscillations in two parallel channels are analyzed taking into account the thermal capacity of the pipes. A different limit cycle than the one that takes place in a single channel system is found. During the instability one channel always follows the typical pressure drop oscillations limit cycle while the other channel oscillates always in the superheated vapor region. This behavior leads to very high wall temperatures at the outlet of the heated pipe. This undesirable situation with one channel operating in the superheated vapor region takes place also for the maldistributed stable solutions.  相似文献   

17.
A fully-developed turbulent pipe flow is allowed to pass through a rotating pipe section, whose axis of rotation coincides with the pipe axis. At the exit end of the rotating section, the flow passes into a stationary pipe. As a result of the relaxation of surface rotation, the turbulent flow near the pipe wall is affected by extra turbulence production created by the large circumferential shear strain set up by the rapid decrease of the rotational velocity to zero at the wall. However, the flow in the most part of the pipe is absent of this extra turbulence production because the circumferential strain is zero as a result of the solid-body rotation imparted to the flow by the rotating pipe section. The combined effect of these two phenomena on the flow is investigated in detail using hot-wire anemometry techniques. Both mean and turbulence fields are measured, together with the wall shear and the turbulent burst behavior at the wall. A number of experiments at different rotational speeds are carried out. Therefore, the effects of rotation on the behavior of wall shear, turbulent burst at the wall, turbulence production and the near-wall flow can be documented and analysed in detail.  相似文献   

18.
Fluid–Structure Interaction (FSI) in pipes can significantly affect pressure fluctuations during water hammer event. In transmission pipelines, anchors with axial stops have an important role in the waterhammer-induced FSI as they can suppress or allow the propagation of additional stress waves in the pipe wall. More specifically, a reduction in the number of axial stops and/or their stiffness causes significant oscillations in the observed pressure signal due to the enhancement of Poisson’s coupling. To confirm these physical arguments, this research conducts experimental investigations and then processes the collected pressure signals. The laboratory tests were run on an anchored pipeline with multiple axial supports which some of them removed at some sections to emerge Poisson’s coupling. The collected pressure signals are analyzed in the time and frequency domain in order to decipher fluctuations that stem from Poisson coupling and other anchors effects. The analysis of the laboratory data reveals that the pattern of the time signals of pressure is primarily affected by the stiffness and location of the supports. Likewise, the properties of structural boundaries characterize the frequency spectrum of the transient pressures, which is manifested by altering the amplitudes corresponding to dominant frequencies of the system. The study is of particular importance in practice of transient based defect detections and pipe system design.  相似文献   

19.
20.
本文采用有限元方法系统地研究了复杂载荷下双金属复合管的屈曲失效,三维有限元数值模型考虑了双金属复合管的准静态复合成型制造过程中产生的残余应力,分析了外基管直径、内衬管壁厚、内外管初始间隙、内衬管屈服强度、内压等因素对双金属复合管屈曲失效的影响。结果表明,加载路径、复合管的几何尺寸及内衬管的屈服强度对双金属复合管的屈曲性能均有较大影响,内充压力可以延迟内衬管的屈曲失效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号