首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
The adsorption, photoreduction and chemical activity of oxygen molecules on the (1 0 0) anatase surface have been investigated here together with the effects that surface oxygen vacancies (VO) can have on these O2-related processes. We use an original approach by treating molecules on the TiO2 surface like surface defects in the same framework successfully used for defects in semiconductors. The achieved results: (i) give the first theoretical evidence of an acceptor behaviour of an adsorbed O2 molecule, which is at the origin of its photoreduction; (ii) show that the VO donor character is strongly affected by the interaction with O2; and (iii) suggest that the release of radicals as well as the formation of O2-related radicals may be favoured by photogenerated electrons in presence of surface VO’s.  相似文献   

2.
Visible-light-driven TiO2-based catalysts for the degradation of pollutants have become the focus of attention. In the present work, iodine-doped titania photocatalysts (I-TiO2) were improved by doping with gallium (Ga,I-TiO2) and the resulting physicochemical properties and photocatalytic activity were investigated. The structural properties of the catalysts were determined by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis and transmission electron microscopy. We found that Ga probably enters the TiO2 framework for doping levels <0.5 mol%. A further increase in Ga content probably leads to dispersal of excess Ga on the TiO2 surface. The photocatalytic activity of Ga,I-TiO2 catalysts was evaluated using 2-chlorophenol (2-CP) as a model compound under visible and UV-vis light irradiation. The results indicate that 0.5 mol% Ga loading and calcination at 400 °C represent optimal conditions in the calcining temperature range 400-600 °C and with doping levels from 0.1% to 1 mol%. The effective enhancement of 2-CP degradation might be attributed to the formation of oxygen vacancies by Ga doping, which could decrease the recombination of electron-hole pairs.  相似文献   

3.
The crystal structure, electronic structure, optical properties and photocatalytic activity of the native defects in anatase TiO2 were investigated based on the density-functional theory (DFT). The results show that oxygen vacancies (VO) have the lowest formation energy, and thus are easiest to form in the bulk structure. The conduction and valence band moves to the high or low energy region, and the energy gap becomes narrower for the native point defect models. In particular, oxygen interstitials (Oi) have a direct band gap, and new gap states appear in the band gap, which can be responsible for the high photocatalytic efficiency in anatase TiO2. The phenomenon of “impurity compensation” takes place for the oxygen and titanium interstitials. Ti vacancy (VTi) can promote the utilization of solar light by analyzing the absorption spectra. All the calculated results show that Oi and VTi are beneficial in improving the photocatalytic activity of TiO2 in the UV–visible light range.  相似文献   

4.
The nano-TiO2 electrode with a p-n homojunction device was designed and fabricated by coating of the Fe3+-doped TiO2 (p-type) film on top of the nano-TiO2 (n-type) film. These films were prepared from synthesized sol-gel TiO2 samples which were verified as anatase with nano-size particles. The semiconductor characteristics of the p-type and n-type films were demonstrated by current-voltage (I-V) measurements. Results show that the rectifying curves of undoped TiO2 and Fe3+-doped TiO2 sample films were observed from the I-V data illustration for both the n-type and p-type films. In addition, the shapes of the rectifying curves were influenced by the fabrication conditions of the sample films, such as the doping concentration of the metal ions, and thermal treatments. Moreover, the p-n homojunction films heating at different temperatures were produced and analyzed by the I-V measurements. From the I-V data analysis, the rectifying current of this p-n junction diode has a 10 mA order higher than the current of the n-type film. The p-n homojunction TiO2 electrode demonstrated greater performance of electronic properties than the n-type TiO2 electrode.  相似文献   

5.
By means of thermogravimetrie and electrical measurements, it has been possible to give accurate informations on the nature of the defects produced by reduction of TiO2 between 800 and 1100°C. For small partial pressures of oxygen Po2. interstitial titanium Ti4i prevails at temperature higher than 900°C. When PO2 increases, oxygen vacancies are produced at first in the doubly ionized form V″o and a progressive transition to singly ionized vacancies V″o can be assumed. The formation enthalpies associated with these defects as calculated from our experimental results are 10.1 eV for Ti4i, 4.6 eV for V″o and 3.6–4.0 eV for V′o. The electronic drift mobility μ is independent both of nature and concentration of the defects. The shape of its temperature dependence leads to conclude that the conduction in spite of the low μ value (0.06 cm2 V?1 s?1 at 1100°C) is of the classical type for wide band semiconductors and not a hopping process.  相似文献   

6.
By means of thermogravimetric measurements, it has been possible to obtain information on the nature of the intrinsic and extrinsic defects of TiO2, NbO2 and solid solutions NbyTi1?yOx Pure TiO2 is an oxygen-deficient oxide The main defects are oxygen vacancies, doubly ionized V..o or singly ionized V.o, and interstitial titanium Ti3i NbO2 is a metal-deficient oxide The main defects are neutral niobium vacancies. The solid solutions NbyTi1?yOx may be divided into two groups If y > 0 04, the behavior is analogous to that of NbO2; with the same defects, but the width of the homogeneity range decreases with the titanium content and Nb0 04Ti0 96O2 is a stoichiometnc oxide If y < 004, the oxides are both metal deficient and oxygen deficient according to the oxygen partial pressure. We have particularly studied the solution Ti0 995Nb0 005O2 In the oxygen-deficient domain, the main defects are assumed to be neutral or singly ionized oxygen vacancies In the metal-deficient domain, the main defects are metal vacancies V4Ti From these results we have deduced the nature of intrinsic defects in TiO2 to be Schottky defects: 2V..O + V4T1.  相似文献   

7.
Thermosetting polyimide(PI)-based nanocomposites containing various contents of nano-TiO2 were fabricated via an in situ polymerization of monomer reactants (PMR) process. Under dry sliding and water-lubricated conditions the friction and wear behaviors of the PMR PI and its nanocomposites were evaluated and compared. The addition of nano-TiO2 in PI contributed to improving the friction and wear behavior considerably under dry sliding. The highest change ratio of wear rate was 61% with the optimum nano-TiO2 content of 3%, while the highest change of friction coefficient was 60% with the optimum nano-TiO2 content of 9%. Under water-lubricated condition, contrarily, the addition of nano-TiO2 in PI does harm to the tribological properties. Namely, the friction coefficient of the nanocomposites increased with increasing the nano-TiO2 content. These results may be caused by the following facts: the hardness of the PI matrix would be increased by adding the nano-TiO2 reducing the ability of elastic deformation of the nanocomposites; accordingly, the poor elastic deformation hindered the formation of a water-lubrication film on the surface. An investigation on the wear tracks indicated that the wear mechanism of PI/TiO2 nanocomposites under dry sliding condition proceeded from fatigue wear to a combination of fatigue wear and abrasive wear with increasing the mass fraction of nano-TiO2.  相似文献   

8.
Haowei Peng 《Physics letters. A》2008,372(9):1527-1530
Native point defects in the rutile TiO2 are studied via first-principles pseudopotential calculations. Except for the two antisite defects, all the native point defects have low formation energies. Under the Ti-rich growth condition, high concentrations of titanium interstitials and oxygen vacancies would form spontaneously in p-type samples; whereas high concentrations of titanium vacancies would form spontaneously in n-type samples regardless of the oxygen partial pressure.  相似文献   

9.
The Sn-TiO2−X nanoparticles have been prepared via a rapid and simple stannous chemical reducing method. The as-prepared Sn-TiO2−X nanoparticles were investigated by means of surface photovoltage spectroscopy (SPS), XPS, and DRS technology as well as photocatalytic degradation of RhB were studied under illumination. The experiment results revealed that the reduction of the TiO2 particles raised their Fermi level, which can enhance the driven force of photoinduced electrons transferring from TiO2 to adsorbed O2 and SnO2 on the surface of TiO2. On the other hand, the amount of oxygen vacancies of the Sn-TiO2−X increased after the stannous chemical reduction. The oxygen vacancies can also effectively inhibit the recombination of photoinduced electrons and holes pairs. These factors are favorable to the photocatalytic reaction.  相似文献   

10.
A simple strategy to greatly increase the thermal stability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under ultraviolet irradiation, via the surface modification with phosphate anions. The results show that the increased anatase thermal stability is attributed to the roles of the phosphate modification effectively inhibiting the contacts among anatase nanocrystals. Compared to un-modified TiO2, the modified TiO2 calcined at high temperature (over 700 °C) exhibits much high photocatalytic activity for degrading Rhodamine B (or phenol) solution, even superior to the commercial P25 TiO2. The activity enhancement is mainly attributed to the increased separation rate of photogenerated charge carriers on the basis of the measurements of steady state- and transient state-surface photovoltage spectroscopy. This work would provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts with high anatase thermal stability.  相似文献   

11.
The visible-light photocatalytic behavior of two different N-doped TiO2 correlated with their physicochemical properties was investigated. The results show that N-TiO2-1, prepared by a novel TiO2 with unique defect structure, is more active in visible-light photocatalytic oxidation of C3H6 than N-TiO2-2, prepared by standard P25-TiO2 (Degussa). The specific rate constant of the former is ca. 5 times that of the latter. One model of photoactive center (Vo-NO-Ti) in anatase phase responsible for the visible-light photocatalytic activity is proposed. The higher the Vo-NO-Ti concentration is, the better the visible-light photocatalytic activity is.  相似文献   

12.
Poly-o-aminobenzoate (POA) was prepared by oxidizing o-aminobenzoic acid with (NH4)2S2O8 in an acidic solution. POA was adsorbed on TiO2 nanocrystal surface to obtain a POA-TiO2 nanocomposite. The polymerization reaction, structure, adsorption reaction on TiO2 surface, and visible light sensitization effect of the polymer adsorbed on TiO2 surface were studied by FT-IR and UV-visible spectra, cyclic voltammetry, and measurements of visible light photoelectrochemical and photocatalytic activities. Three kinds of POA with different long conjugate structures can be formed. These polymers have large absorbance in wide visible light region. POA molecules can be adsorbed on TiO2 surface by anchoring their carboxylate groups to the TiO2 surface with a multi-bridging chelating mode, which causes formation of the POA-TiO2 nanocomposite with a high stability. POA adsorbed on the TiO2 nanocrystal showed high visible light sensitization effect in the photocatalytic reaction.  相似文献   

13.
吴雪炜  吴大建  刘晓峻 《物理学报》2010,59(7):4788-4793
利用X射线衍射谱、拉曼光谱和紫外-可见光吸收光谱研究了硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响.X射线衍射谱和拉曼光谱结果表明,掺硼(氮、氟)对TiO2纳米颗粒的锐钛矿相晶体结构无明显影响,而其锐钛矿晶格出现畸变(c/a值增大),这被归因于掺杂原子对TiO2纳米颗粒表面氧原子缺位沿晶格c轴方向的占据.另外,掺硼(氮、氟)TiO2纳米颗粒吸收带红移与TiO相似文献   

14.
Novel graphene–TiO2 (GR–TiO2) composite photocatalysts were synthesized by hydrothermal method. During the hydrothermal process, both the reduction of graphene oxide and loading of TiO2 nanoparticles on graphene were achieved. The structure, surface morphology, chemical composition and optical properties of composites were studied using XRD, TEM, XPS, DRS and PL spectroscopy. The absorption edge of TiO2 shifted to visible-light region with increasing amount of graphene in the composite samples. The photocatalytic degradation of methyl orange (MO) was carried out using graphene–TiO2 composite catalysts in order to study the photocatalytic efficiency. The results showed that GR–TiO2 composites can efficiently photodegrade MO, showing an enhanced photocatalytic activity over pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of the composite catalysts might be attributed to great adsorptivity of dyes, extended light absorption range and efficient charge separation due to giant π-conjugation system and two-dimensional planar structure of graphene.  相似文献   

15.
A new development to create the surface defect (Ti3+) on TiO2 was reported in this paper and compared to the common methods which must prepare the crystalline TiO2 in the first step prior, and then create the surface defect in the second step. In this work, the surface defect creation was performed in the first step coinciding with the crystalline TiO2 preparation using the sol-gel method. The creation was performed by varying the amounts of oxygen fed during calcination. Based on the CO2-temperature programmed desorption (CO2-TPD) and electron spin resonance (ESR) results, the surface defect (Ti3+) substantially increased with the amount of oxygen fed. Moreover, the samples resulting from calcination were used as photocatalysts for ethylene decomposition. The reactivity of those samples was also discussed.  相似文献   

16.
Black TiO2-x has recently emerged as one of the most promising visible-light-driven photocatalysts, but current synthesis routes that require a reduction step are not compatible with cost-effective mass production and a relatively large particle such as microspheres. Herein, we demonstrate a simple, fast, cost-effective and scalable one-step process based on an ultrasonic spray pyrolysis for the synthesis of black TiO2-x microspheres. The process utilizes an oxygen-deficient environment during the pyrolysis of titanium precursors to directly introduce oxygen vacancies into synthesized TiO2 products, and thus a reduction step is not required. Droplets of a titanium precursor solution were generated by ultrasound energy and dragged with continuous N2 flow into a furnace for the decomposition of the precursor and crystallization to TiO2 and through such a process spherical black TiO2-x microspheres were obtained at 900 °C. The synthesized black TiO2-x microsphere with trivalent titanium/oxygen vacancy clearly showed the variation of physicochemical properties compared with those of white TiO2. In addition, the synthesized microspheres presented the superior photocatalytic activity for degradation of methylene blue under visible light irradiation. This work presents a new methodology for a simple one-step synthesis of black metal oxides microspheres with oxygen vacancies for visible-light-driven photocatalysts with a higher efficiency.  相似文献   

17.
The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory.An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism.By comparing the formation energies for Na,Bi and Ti vacancy,the Na vacancy is more stable than the others.Therefore,we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy.Among the five physisorption configurations we considered,the most likely adsorption position is Na vacancy.The O2 adsorption enhances the magnetism of the system.The contribution of spin polarization is mainly from the O 2p orbitals.The characteristics of exchange coupling are also calculated,which show that the ferromagnetic coupling is favorable.Compared with the previous calculation results,our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably,because of taking into account adsorbed oxygen and cation vacancies.Moreover,our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.  相似文献   

18.
Zinc oxide (ZnO) phosphors with highly efficient green emission have been prepared by calcining ZnS with NH4Br as additive in air atmosphere. The luminescent properties of as-prepared ZnO phosphors were characterized by X-ray photoelectron spectroscopy and photoluminescence. Our results reveal that the green emission is ascribed to a transition of a photo-generated electron from the localized defect centers (Vo+) to a deeply trapped hole (VZn) within the band gap. The addition of NH4Br enhances the luminescent emission of ZnO by promoting the formation of vacancies of both oxygen and zinc.  相似文献   

19.
A device of multiple nano-TiO2 layers was proposed and fabricated to prevent a dye/nano-TiO2 region from serious photo-degradation. In this device, the top of the dye/TiO2 region was designed to be coated using sol-gel nano-TiO2 thin films to shield UV irradiation from the photo-degradation effect. The sol-gel TiO2 was prepared in a low temperature (75 °C) and verified as nano-sized particles and an anatase crystalline structure. Different devices of the multi-layer samples fabricated using different compositions of nano-TiO2 were produced and exposed for UV irradiation tests. Results show that the presence of the sol-gel TiO2 films coated on top of the dye/TiO2 region can significantly alleviate the dye photo-degradation under UV irradiation. This multi-layer device can effectively improve the photo-stability of the dye/TiO2 region in a UV-exposure environment.  相似文献   

20.
Mg2SnO4 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different depths, such as [SnMg—Oi], [SnMg—VO·], [SnMg—VO×] and MgSn, correspond to the components at 85 ℃, 146 ℃ and 213 ℃ of the thermoluminescence curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号