首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We report the synthesis and characterization of SnO2@multiwalled carbon nanotubes (MWCNTs) nanocomposite as a high capacity anode material for sodium-ion battery. SnO2@MWCNT nanocomposite was synthesized by a solvothermal method. SEM and TEM analyses show the uniform distribution of SnO2 nanoparticles on carbon nanotubes. When applied as anode materials in Na-ion batteries, SnO2@MWCNT nanocomposite exhibited a high sodium storage capacity of 839 mAh g 1 in the first cycle. SnO2@MWCNT nanocomposite also demonstrated much better cycling performance than that of bare SnO2 nanoparticles and bare MWCNTs. Furthermore, the nanocomposite electrode also showed a good cyclability and an enhanced Coulombic efficiency on cycling.  相似文献   

2.
Carbon nanotubes (CNTs), including multi-walled CNTs (MWCNTs) and single-walled CNTs (SWCNTs), are employed as conductive additives in lithium ion batteries. The effects of MWCNTs’ carbon precursors, diameter, and weight fraction on the electrochemical behavior of MWCNTs/LiCoO2 composite cathode are investigated. Meanwhile, a comparison is made between SWCNTs /LiCoO2 and MWCNTs/LiCoO2. Among the three kinds of carbon precursors: CH4, natural gas, and C2H2, MWCNTs prepared from CH4 are very fit for acting as conductive additives due to their better crystallinity and lower electrical resistance. MWCNTs with smaller diameter favor improving the electrochemical behavior of MWCNTs/LiCoO2 composite cathode at higher charge/discharge rate owing to their advantage in primary particle number in unit mass. To make full use of LiCoO2 at higher rate, it is necessary to add at least 5 wt.% of MWCNTs with a diameter 10~30 nm. However, SWCNTs are not expected to be added into LiCoO2 composite cathode since they tend to form bundles.  相似文献   

3.
Double-wall carbon nanotubes (DWCNTs), single-wall carbon nanotubes (SWCNTs), and multi-wall carbon nanotubes (MWCNTs) were investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells. The counter-electrodes were prepared on fluorine-doped tin oxide glass substrates by the screen printing technique from pastes of carbon nanotubes and organic binder. The solar cells were assembled from carbon nanotubes counter-electrodes and screen printed anodes made from titanium dioxide. The cells produced with DWCNTs, SWCNTs or MWCNTs have overall conversion efficiencies of 8.0%, 7.6% and 7.1%, respectively. Electrochemical impedance spectroscopy measurements revealed that DWCNTs displayed the highest catalytic activity for the reduction of tri-iodide ions. The large surface area and superior chemical stability of the DWCNTs facilitated the electron-transfer kinetics at the interface between counter-electrode and electrolyte and yielded the lowest transfer resistance, thereby improving the photovoltaic activity. A short-term stability test at moderate conditions confirmed the robustness of solar cells based on the use of DWCNTs, SWCNTs or MWCNTs.
Figure
Double-wall carbon nanotubes, single-wall carbon nanotubes and multi-wall carbon nanotubes have been investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells (DSCs). The carbon nanotubes (CNTs) based DSCs exhibit efficiency high up to 8.0% and are comparable to the Pt based DSCs prepared in the same condition. The CNTs based DSCs have demonstrated a good stability.  相似文献   

4.
A porous interwoven network is synthesized, consisting of ultralong MnO2 nanowires and multi‐walled carbon nanotubes (MWCNTs). Serving as the anode for a lithium‐ion battery, this nanocomposite demonstrates excellent performance due to the synergistic integration of these two 1D materials. Taking advantage of the excellent flexibility and strength of this MnO2–MWCNT network, a full, bendable battery is made that offers high capacity, cycling stability, and low cost.  相似文献   

5.
采用十二烷基三甲基溴化铵(DTAB)辅助固相法制备SnO2/MWCNTs纳米复合材料,X射线衍射(XRD)、透射电镜(TEM)测试表明,SnO2纳米颗粒均匀包裹在MWCNTs表面.循环伏安和恒流充放电测试表明,与SnO2颗粒和纯MWCNTs相比,SnO2/MWCNTs纳米复合材料在1.0 mol·L-1 Na2SO4电解液中的电化学电容性质得到明显改善.当SnO2质量分数为11%时,在电流密度0.2 A·g-1下,SnO2的电容值最大可达217.3 F·g-1.  相似文献   

6.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

7.
Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.  相似文献   

8.
Multiwalled carbon nanotube (MWCNT)‐templated cobalt phthalocyanine (CoPc) assemblies are prepared by microwave reaction with the aid of NH4Cl. The assemblies of CoPc/MWCNTs are added to the electrolyte of Li/SOCl2 battery to show their potential application in the field of catalysis. The assemblies display a uniform coaxial nanotube structure. In the control test, the CoPc/MWCNTs synthesized without NH4Cl exhibit the aggregation of the nanotubes of CoPc/MWCNTs. It indicates that the use of NH4Cl as gas source is efficient in enhancing diffusion of the MWCNTs and controlling the growth of CoPc. The catalytic reduction of SOCl2 can be carried out by CoPc molecules outside the assemblies and the MWCNTs inside the assemblies. The assemblies of CoPc/ MWCNTs exhibit excellent electrochemical catalytic activity to Li/SOCl2 battery. The discharge energy of Li/SOCl2 battery catalyzed by CoPc/MWCNTs is 144% higher than that of the battery without catalyst, and is 94% higher than the energy of Li/SOCl2 battery catalyzed by bulk CoPc.  相似文献   

9.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

10.
Tin oxide (SnO2) nanotubes with a fiber‐in‐tube structure have been prepared by electrospinning and the mechanism of their formation has been investigated. Tin oxide‐carbon composite nanofibers with a filled structure were formed as an intermediate product, which were then transformed into SnO2 nanotubes with a fiber‐in‐tube structure during heat treatment at 500 °C. Nanofibers with a diameter of 85 nm were found to be located inside hollow nanotubes with an outer diameter of 260 nm. The prepared SnO2 nanotubes had well‐developed mesopores. The discharge capacities of the SnO2 nanotubes at the 2nd and 300th cycles at a current density of 1 A g?1 were measured as 720 and 640 mA h g?1, respectively, and the corresponding capacity retention measured from the 2nd cycle was 88 %. The discharge capacities of the SnO2 nanotubes at incrementally increased current densities of 0.5, 1.5, 3, and 5 A g?1 were 774, 711, 652, and 591 mA h g?1, respectively. The SnO2 nanotubes with a fiber‐in‐tube structure showed superior cycling and rate performances compared to those of SnO2 nanopowder. The unique structure of the SnO2 nanotubes with a fiber@void@tube configuration improves their electrochemical properties by reducing the diffusion length of the lithium ions, and also imparts greater stability during electrochemical cycling.  相似文献   

11.
Finding out how to overcome the self‐aggregation of nanostructured electrode materials is a very important issue in lithium‐ion battery technology. Herein, by an in situ construction strategy, hierarchical SnO2 nanosheet architectures have been fabricated on a three‐dimensional macroporous substrate, and thus the aggregation of the SnO2 nanosheets was effectively prevented. The as‐prepared hierarchical SnO2 nanoarchitectures on the nickel foam can be directly used as an integrated anode for lithium‐ion batteries without the addition of other ancillary materials such as carbon black or binder. In view of their apparent advantages, such as high electroactive surface area, ultrathin sheet, robust mechanical strength, shorter ion and electron transport path, and the specific macroporous structure, the hierarchical SnO2 nanosheets exhibit excellent lithium‐storage performance. Our present growth approach offers a new technique for the design and synthesis of metal oxide hierarchical nanoarrays that are promising for electrochemical energy‐storage electrodes without carbon black and binder.  相似文献   

12.
PVP-protected SnO2 nanoparticles and SnO2–graphite nanocomposites were prepared by urea-mediated homogeneous hydrolysis of SnCl4. For unsupported SnO2 TEM examination showed particles in the range of 4–6 nm, and a narrow particle size distribution. The particles also dispersed very well on a graphite surface. The SnO2–graphite nanocomposites prepared as such combine the high specific capacity of Sn-based anodes and the cyclability of graphite, and are promising anode materials for Li ion battery applications.  相似文献   

13.
In this work, dodecylamine‐modified graphene nanosheets (DA‐GNSs) and γ‐aminopropyl‐triethoxysilane‐treated multiwalled carbon nanotubes (f‐MWCNTs) are employed to prepare cyanate ester (CE) thermally conductive composites. By adding 5 wt% DA‐GNSs or f‐MWCNTs to the CE resin, the thermal conductivities of the composites became 3.2 and 2.5 times that of the CE resin, respectively. To further improve the thermal conductivity, a mixture of the two fillers was utilized. A remarkable synergetic effect between the DA‐GNSs and f‐MWCNTs on improving the thermal conductivity of CE resin composites was demonstrated. The composite containing 3 wt% hybrid filler exhibited a 185% increase in thermal conductivity compared with pure CE resin, whereas composites with individual DA‐GNSs and f‐MWCNTs exhibited increases of 158 and 108%, respectively. Moreover, the composite with hybrid filler retained high electrical resistivity. Scanning electron microscopy images of the composite morphologies showed that the modified graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) were uniformly dispersed in the CE matrix, and a number of junction points among MWCNTs and between MWCNTs and GNSs formed in the composites with hybrid fillers. Generally, we can conclude that these composites filled with hybrid fillers may be promising materials of further improving the thermal conductivity of CE composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

15.
Owing to the high specific capacity and energy density, metal oxides have become very promising electrodes for lithium‐ion batteries (LIBs). However, poor electrical conductivity accompanied with inferior cycling stability resulting from large volume changes are the main obstacles to achieve a high reversible capacity and stable cyclability. Herein, a facile and general approach to fabricate SnO2, Fe2O3 and Fe2O3/SnO2 fibers is proposed. The appealing structural features are favorable for offering a shortened lithium‐ion diffusion length, easy access for the electrolyte and reduced volume variation when used as anodes in LIBs. As a consequence, both single and hybrid oxides show satisfactory reversible capacities (1206 mAh g?1 for Fe2O3 and 1481 mAh g?1 for Fe2O3/SnO2 after 200 cycles at 200 mA g?1) and long lifespans.  相似文献   

16.
A large‐scale hierarchical assembly route is reported for the formation of SnO2 on the nanoscale that contains rigid and robust spheres with irregular channels for rapid access of Li ions into the hierarchically structured interiors. Large volume changes during the process of Li insertion and extraction are accommodated by the SnO2 nanoflake spheres’ internal porosity. The hierarchical SnO2 nanoflake spheres exhibit good lithium storage properties with high capacity and long‐lasting performance when used as lithium‐ion anodes. A reversible capacity of 517 mA h g?1, still greater than the theoretical capacity of graphite (372 mA h g?1), after 50 charge–discharge cycles is attained. Meanwhile, the synthesis process is simple, inexpensive, safe, and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power.  相似文献   

17.
A facile method is developed for homogeneous dispersion of sulfur (S) nanoparticles in multi-walled carbon nanotubes (MWCNTs). The process involves the modification of MWCNTs via oxidation catalyzed by acid and the introduction of sulfur nanoparticles into the MWCNTs through direct precipitation. The resulting sample (precipitated S/MWCNTs) is characterized with scanning electron microscopy and thermogravimetric analysis, and its performance as cathode of lithium/sulfur battery is investigated with a comparison of the sample prepared by ball-milling (ball-milling S/MWCNTs). It is found that the precipitated S/MWCNTs exhibit better battery performance than the ball-milling S/MWCNTs. The initial discharge capacity is 1,299 mA?h?g?1 for the precipitated S/MWCNTs but only 839 mA?h?g?1 for ball-milling S/MWCNTs at 0.02 C. The capacity remains 800 mA?h?g?1 for the precipitated S/MWCNTs but only 620 mA?h?g?1 for ball-milling S/MWCNTs at 0.05 C after 50 cycles. The better performance of the precipitated S/MWCNTs results from the improved uniformity of S dispersed in MWCNTs through precipitation.  相似文献   

18.
Bilirubin adsorption on carbon nanotube surfaces has been studied to develop a new adsorbent in the plasma apheresis. Powder-like carbon nanotubes were first examined under various adsorption conditions such as temperatures and initial concentrations of bilirubin solutions. The adsorption capacity was measured from the residual concentrations of bilirubin in the solution after the adsorption process using a visible absorption spectroscopy. We found that multi-walled carbon nanotubes (MWCNTs) exhibit greater adsorption capacity for bilirubin molecules than that of single-walled carbon nanotubes (SWCNTs). To guarantee the safety of the adsorbents, we fabricated carbon nanotube sheets in which leakage of CNTs to the plasma is suppressed. Since SWCNTs are more suitable for robust sheets, a complex sheet consisting of SWCNTs as the scaffolds and MWCNTs as the efficient adsorbents. CNT/polyaniline complex sheets were also fabricated. Bilirubin adsorption capacity of CNTs has been found to be much larger than that of the conventional materials because of their large surface areas and large adsorption capability for polycyclic compound molecules due to their surface structure similar to graphite.  相似文献   

19.
碳纳米管/SnO2复合电极的制备及其电催化性能研究   总被引:4,自引:0,他引:4  
采用液相沉积法制备碳纳米管(CNTs)/SnO2复合材料, 并制备成电极, 分别与石墨/SnO2及活性炭/SnO2复合电极比较, 考察电催化降解有机废水的性能. 由于CNTs高的比表面积及优良的导电性能, 结合SnO2良好的催化活性, CNTs/SnO2复合电极电催化降解有机废水性能优越. 研究发现, CNTs的预处理情况、SnO2负载量以及煅烧温度对复合电极的电催化性能有重要影响. 当功能化CNTs负载40% SnO2, 煅烧温度600 ℃时, 所得CNTs/SnO2复合电极电催化降解有机废水的能力是纯CNTs电极的2倍. 最后, 初步探讨了CNTs/SnO2复合电极电催化降解有机废水的机理.  相似文献   

20.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1 642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号