首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

2.
Preparation of pea protein isolate-xylan (PPI-X) conjugate-stabilized nanoemulsions using ultrasonic homogenization and the corresponding structure and environmental stability were investigated in this study. Conditions used to prepare nanoemulsions were optimized using a response surface methodology as follows: protein concentration 8.86 mg/mL, ultrasound amplitudes 57 % (370.5 W), and ultrasound time 16 min. PPI-X conjugate-stabilized nanoemulsions formed under these conditions exhibited less mean droplet size (189.4 ± 0.45 nm), more uniform droplet distribution, greater absolute value of zeta-potential (44.8 ± 0.22 mV), and higher protein adsorption content compared with PPI-stabilized nanoemulsions. PPI-X conjugate-stabilized nanoemulsions also exhibited even particle distribution and dense network structure, which might be reasons for the observed high interfacial protein adsorption content of conjugate-stabilized nanoemulsions. Moreover, better stability against environmental stresses, such as thermal treatment, freeze–thaw treatment, ionic strength and type, and storage time was also observed for the conjugate-stabilized nanoemulsions, indicating that this type of nanoemulsions possess a potential to endure harsh food processing conditions. Therefore, results provide a novel approach for the preparation of protein-polysaccharide conjugate-stabilized nanoemulsions to be applied as novel ingredients to meet special requirements of processed foods.  相似文献   

3.
O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.  相似文献   

4.
In this study, nanoemulsions for skincare products were continuously produced using a hydrodynamic cavitation reactor (HCR) designed with a rotor and stator. The key component of this research is the utilization of a 3D-printed rotor in a HCR for the production of an oil-in-water nanoemulsion. Response surface methodology was used to determine the process conditions, such as speed of the rotor, flow rate, as well as, Span60, Tween60, and mineral oil concentrations, for generating the optimal droplet size in the nanoemulsion. The results showed that a droplet size of 366.4 nm was achieved under the recommended conditions of rotor speed of 3500 rpm, flow rate of 3.3 L/h, Span60 concentration of 2.36 wt%, Tween60 concentration of 3.00 wt%, and mineral oil concentration of 1.76 wt%. Moreover, the important characteristics for consideration in skincare products, such as polydispersity index, pH, zeta potential, viscosity, stability, and niacin released from formulations, were also assessed. For the niacin release profile of emulsion and nanoemulsion formulations, different methods, such as magnetic stirring, ultrasound, and hydrodynamic cavitation, were compared. The nanoemulsion formulations provided a greater cumulative release from the formulation than the emulsion. Particularly, the nanoemulsion generated using the HCR provided the largest cumulative release from the formulation after 12 h. Therefore, the present study suggests that nanoemulsions can be created by means of hydrodynamic cavitation, which reduces the droplet size, as compared to that generated using other techniques. The satisfactory results of this study indicate that the rotor-stator-type HCR is a potentially cost-effective technology for nanoemulsion production.  相似文献   

5.
Polysaccharides of β-d-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-d-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design – CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-d-glucan-loaded nanoemulsions exhibited good stability over 90 days under different storage conditions (4 °C and 25 °C). The studies using palm olein based β-d-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-d-glucan.  相似文献   

6.
The optimum formulation and ultrasonic condition for fabrication of cinnamon essential oil (CEO) nanoemulsion were determined using Response Surface Methodology (RSM). The CEO nanoemulsions were formed using an ultrasonic bath (43 kHz at power output of 210 W) and an ultrasonic probe (24 kHz at power of 400 W). Probe ultrasonication outperformed bath ultrasonication since it produced nanoemulsions with smaller droplet size, narrower size distribution as measured using polydispersity index (PDI), and higher viscosity. The influences of sonication time of 180.23–351.77 s, temperature of 4.82–45.18 °C, and Tween® 80 concentration of 1–3% w/w on the droplet size, PDI, and viscosity were investigated using RSM based on Box-Behnken design (BBD). The RSM revealed that the sonication time of 266 s, temperature of 4.82 °C, and Tween® 80 of 3% w/w produced the optimum CEO nanoemulsion with droplet size of 65.98 nm, PDI of 0.15, and viscosity of 1.67 mPa.s. Moreover, the optimum nanoemulsion had good stability in terms of droplet size and PDI when storing at 4, 30, and 45 °C for 90 days. The antifungal activity of the optimum CEO nanoemulsion was then investigated against Aspergillus niger, Rhizopus arrhizus, Penicillium sp., and Colletotrichum gloeosporioides in comparison to CEO coarse emulsion. The results showed that the CEO nanoemulsion had better antifungal activity than coarse emulsion of CEO.  相似文献   

7.
Minimising oil droplet size using ultrasonic emulsification   总被引:1,自引:0,他引:1  
The efficient production of nanoemulsions, with oil droplet sizes of less than 100 nm would facilitate the inclusion of oil soluble bio-active agents into a range of water based foods. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper, we demonstrate that it is possible to create remarkably small transparent O/W nanoemulsions with average diameters as low as 40 nm from sunflower oil. This is achieved using ultrasound or high shear homogenization and a surfactant/co-surfactant/oil system that is well optimised. The minimum droplet size of 40 nm, was only obtained when both droplet deformability (surfactant design) and the applied shear (equipment geometry) were optimal. The time required to achieve the minimum droplet size was also clearly affected by the equipment configuration. Results at atmospheric pressure fitted an expected exponential relationship with the total energy density. However, we found that this relationship changes when an overpressure of up to 400 kPa is applied to the sonication vessel, leading to more efficient emulsion production. Oil stability is unaffected by the sonication process.  相似文献   

8.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

9.
Inulin, rice bran oil and rosemary essential oil were used to produce high quality emulsion filled gel (EFG) using ultrasonic radiation. Response surface methodology was used to investigate the effects of oil content, inulin content and power of ultrasound on the stability and consistency of prepared EFG. The process conditions were optimized by conducting experiments at five different levels. Second order polynomial response surface equations were developed indicating the effect of variables on EFG stability and consistency. The oil content of 18%; inulin content of 44.6%; and power of ultrasound of 256 W were found to be the optimum conditions to achieve the best EFG stability and consistency. Microstructure and rheological properties of prepared EFG were investigated. Oil oxidation as a result of using ultrasonic radiation was also investigated. The increase of oxidation products and the decrease of total phenolic compounds as well as radical scavenging activity of antioxidant compounds showed the damaging effect of ultrasound on the oil quality of EFG.  相似文献   

10.
Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared d-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic–lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were d-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of d-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of d-limonene in the skin was 40.11 μL/cm2 at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the d-limonene nanoemulsion may be a safe carrier for transdermal drug delivery.  相似文献   

11.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

12.
Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools.  相似文献   

13.
Fang JY  Hung CF  Hua SC  Hwang TL 《Ultrasonics》2009,49(1):39-14347
Camptothecin is a topoisomerase I inhibitor that acts against a broad spectrum of cancers. However, its clinical application is limited by its insolubility, instability, and toxicity. The aim of the present study was to develop acoustically active nanoemulsions for camptothecin encapsulation to circumvent these delivery problems. The nanoemulsions were prepared using liquid perfluorocarbons and coconut oil as the cores of the inner phase. These nanoemulsions were stabilized by phospholipids and/or Pluronic F68 (PF68). The nanoemulsions were prepared at high drug loading of ∼100% with a mean droplet diameter of 220-420 nm. Camptothecin in these systems showed retarded drug release. Camptothecin in nanoemulsions with a lower oil concentration exhibited cytotoxicity against melanomas and ovarian cancer cells. Confocal laser scanning microscopy confirmed nanoemulsion uptake into cells. Hemolysis caused by the interaction between erythrocytes and the nanoemulsions was investigated. Formulations with phosphatidylethanolamine as the emulsifier showed less hemolysis than those with phosphatidylcholine. Using a 1 MHz ultrasound, an increased release of camptothecin from the system with lower oil concentration could be established, illustrating a drug-targeting effect.  相似文献   

14.
Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60 nm) of the emulsion was obtained at HLB of 14, S/O1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5 min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced.  相似文献   

15.
Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21 ± 0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood–brain barrier in the treatment of epilepsy.  相似文献   

16.
The present work deals with measurements of the droplet size distribution in an ultrasonic atomizer using photographic analysis with an objective of understanding the effect of different equipment parameters such as the operating frequency, power dissipation and the operating parameters such as the flow rate and liquid properties on the droplet size distribution. Mechanistic details about the atomization phenomena have also been established using photographic analysis based on the capture of the growth of the instability and sudden ejection of droplets with high velocity. Velocity of these droplets has been measured by capturing the motion of droplets as streaks. It has been observed that the droplet size decreases with an increase in the frequency of atomizer. Droplet size distribution was found to change from the narrow to wider range with an increase in the intensity of ultrasound. The drop size was found to decrease with an increase in the fluid viscosity. The current work has clearly highlighted the approach for the selection of operating parameters for achieving a desired droplet size distribution using ultrasonic atomization and has also established the controlling mechanisms for the formation of droplet. An empirical correlation for the prediction of the droplet size has been developed based on the liquid and equipment operating properties.  相似文献   

17.
Chitosan nanoparticles (NPs) exhibit great potential in drug-controlled release systems. A controlled hydrodynamic cavitation (HC) technique was developed to intensify the emulsion crosslinking process for the synthesis of chitosan NPs. Experiments were performed using a circular venturi and under varying operating conditions, i.e., types of oil, addition mode of glutaraldehyde (Glu) solution, inlet pressure (Pin), and rheological properties of chitosan solution. Palm oil was more appropriate for use as the oil phase for the HC-intensified process than the other oil types. The addition mode of water-in-oil (W/O) emulsion containing Glu (with Span 80) was more favorable than the other modes for obtaining a narrow distribution of chitosan NPs. The minimum size of NPs with polydispersity index of 0.342 was 286.5 nm, and the maximum production yield (Py) could reach 47.26%. A positive correlation was found between the size of NPs and the droplet size of W/O emulsion containing chitosan at increasing Pin. Particle size, size distribution, and the formation of NPs were greatly dependent on the rheological properties of the chitosan solution. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the molecular structure of palm oil was unaffected by HC-induced effects. Compared with ultrasonic horn, stirring-based, and conventional drop-by-drop processes, the application of HC to intensify the emulsion crosslinking process allowed the preparation of a finer and a narrower distribution of chitosan NPs in a more energy-efficient manner. The novel route developed in this work is a viable option for chitosan NP synthesis.  相似文献   

18.
Ultrasound is one means among others of producing emulsions mechanically. Droplet disruption in sonicated liquid-liquid systems is considered to be controlled by cavitation. Both hydrostatic pressure and gas content of the liquids influence the probability and intensity of cavitation. Continuous ultrasound emulsification experiments were carried out to elucidate the effect of these parameters on the result of droplet disruption. Maximum energy density in the apparatus decreases with increasing hydrostatic pressure, probably due to partial suppression of cavitation which is the main mechanism of power dissipation. At constant energy density there is no significant influence of hydrostatic pressure on the emulsification result, however. Corresponding results were obtained for the influence of the gas content. Gas saturation or partial degassing prior to emulsification lead to a shift in maximum energy density. But, again, at constant energy density no clear effect on the droplet size of the emulsion is observed.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(4):1265-1274
This study reports on the process optimization of ultrasound-assisted, food-grade oil–water nanoemulsions stabilized by modified starches. In this work, effects of major emulsification process variables including applied power in terms of power density and sonication time, and formulation parameters, that is, surfactant type and concentration, bioactive concentration and dispersed-phase volume fraction were investigated on the mean droplet diameter, polydispersity index and charge on the emulsion droplets. Emulsifying properties of octenyl succinic anhydride modified starches, that is, Purity Gum 2000, Hi-Cap 100 and Purity Gum Ultra, and the size stability of corresponding emulsion droplets during the 1 month storage period were also investigated. Results revealed that the smallest and more stable nanoemulsion droplets were obtained when coarse emulsions treated at 40% of applied power (power density: 1.36 W/mL) for 7 min, stabilized by 1.5% (w/v) Purity Gum Ultra. Optimum volume fraction of oil (medium chain triglycerides) and the concentration of bioactive compound (curcumin) dispersed were 0.05 and 6 mg/mL oil, respectively. These results indicated that the ultrasound-assisted emulsification could be successfully used for the preparation of starch-stabilized nanoemulsions at lower temperatures (40–45 °C) and reduced energy consumption.  相似文献   

20.
Correlations to predict droplet size in ultrasonic atomisation.   总被引:2,自引:0,他引:2  
R Rajan  A B Pandit 《Ultrasonics》2001,39(4):235-255
In conventional two fluid nozzles, the high velocity air imparts its energy to the liquid and disrupts the liquid sheet into droplets. If the energy for liquid sheet fragmentation can be supplied by the use of ultrasonic energy, finer droplets with high sphericity and uniform size distribution can be achieved. The other advantage of ultrasound induced atomisation process is the lower momentum associated with ejected droplets compared to the momentum carried by the droplets formed using conventional nozzles. This has advantage in coating and granulation processes. An ultrasonic probe sonicator was designed with a facility for liquid feed arrangement and was used to atomise the liquid into droplets. An ingenious method of droplet measurement was attempted by capturing the droplets on a filter paper (size variation with regard to wicking was uniform in all cases) and these are subjected to image analysis to obtain the droplet sizes. This procedure was evaluated by high-speed photography of droplets ejected at one particular experimental condition and these were image analysed. The correlations proposed in the literature to predict droplet sizes using ultrasound do not take into account all the relevant parameters. In this work, a truly universal correlation is proposed which accounts for the effects of physico-chemical properties of the liquid (flow rate, viscosity, density and surface tension), and ultrasonic properties like amplitude, frequency and the area of vibrating surface. The significant contribution of this work is to define dimensionless numbers incorporating ultrasonic parameters, taking cue from the conventional numbers that define the significance of different forces involved in droplet formation. The universal correlations proposed are robust and can be used for designing ultrasonic atomisers for different applications. Among the correlations proposed here, those ones that are based on the dimensionless numbers and Davies approach predict droplet sizes within acceptable limits of deviation. Also, an empirical correlation from experimental data has been proposed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号