首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sonolytic hydrolysis of peptides with addition of phenolic reagents to aqueous solutions is described. Sonolysis of an aqueous solution of peptides to which catechol (o-dihydroxybenzene) had been added resulted in hydrolytic products reflecting the amino acid sequence without any side reactions, while sonolysis without any additives resulted in oxidation analytes and degradation products caused by side reactions. Although the use of additives such as resorcinol (m-dihydroxybenzene), hydroquinone (p-dihydroxybenzene) and phenol was also effective in producing sequence related products, several degradation products were produced by side reactions. A characteristic of the sonolysis of peptides is that the N-terminal side of proline, Xxx-Pro, is more susceptible than other amino acid residues to the process. This characteristic of sonolysis is superior to that of acid hydrolysis in which cleavage at the C-terminal side of proline, Pro-Xxx is difficult, and where dehydration products result due to side reactions.  相似文献   

2.
3.
When an aqueous Au(III) solution containing 1-butanol was sonicated under Ar, Au(III) was reduced to Au(0) to form Au particles. This is because various reducing species are formed during sonication, but the reactivity of these species has not yet been evaluated in detail. Therefore, in this study, we analyzed the effects of Au(III) on the rates of the formation of gaseous and water-soluble compounds (CH4, C2H6, C2H4, C2H2, CO, CO2, H2, H2O2, and aldehydes), and the rate of Au(III) reduction as a function of 1-butanol concentration. The following facts were recognized: 1) for Au(III) reduction, the contribution of the radicals formed by the pyrolysis of 1-butanol was higher than that of the secondary radicals formed by the abstraction reactions of 1-butanol with ·OH, 2) ·CH3 and CO acted as reductants, 3) the contribution of ·H to Au(III) reduction was small in the presence of 1-butanol, 4) aldehydes and H2 did not act as reductants, and 5) the types of species that reduced Au(III) changed with 1-butanol concentration.  相似文献   

4.
Sonolytic degradation of hazardous organic compounds in aqueous solution   总被引:16,自引:0,他引:16  
Benzene, chlorobenzene, 1,2-, 1,3-, 1,4-dichlorobenzene, biphenyl, and polychlorinated biphenyls such as 2-, 4-chlorobiphenyl and 2,2′-dichlorobiphenyl in aqueous solutions have been subjected to sonolysis with 200 kHz ultrasound at an intensity of 6 W cm−2 under an argon atmosphere. 80–90% of initial amount of these compounds were degraded by 30–60 min of sonication when the initial concentrations were 10–100 μmol l−1. The degradation rate of these compounds increased with increase in their vapor pressures. In all cases of sonolysis of chlorinated organic compounds, an appreciable amount of liberated chloride ion was observed.  相似文献   

5.
Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures.  相似文献   

6.
Sonolysis of chlorobenzene in Fenton-type aqueous systems   总被引:4,自引:0,他引:4  
The influence of ultrasounds (200 kHz frequency) on the decomposition of chlorobenzene (CB) in a water solution (around 100 ppm concentration) containing iron or palladium sulfates was investigated. The intermediates of the sonolysis were identified, thus allowing a deeper insight into the degradation mechanism. It was established that CB degradation starts by pyrolysis inside the cavitation bubbles. The initial sonolysis product is benzene, formed in a reaction occurring outside the cavitation from phenyl radicals and the hydrogen atoms sonolytically generated from the water. Polyphenols as products of the CB sonochemical degradation are reported for the first time. The palladium salt was found to be a useful and sensitive indicator for differentiating the sites and mechanisms of the product formation. An alternative mechanism for the CB sonolysis is advanced, explaining the formation of phenols, polyphenols, chlorophenols and benzene.  相似文献   

7.
Whey protein isolate (WPI) hydrolysates have higher solubility in aqueous phase and enhanced biological properties. Hydrolysis of WPI was optimized using operating pressure (ΔP, bar), number of passes (N), and WPI concentration (C, %) as deciding parameters in hydrodynamic cavitation treatment. The optimum conditions for generation of WPI hydrolysate with full factorial design were 8 bar, 28 passes, and 4.5% WPI concentration yielding 32.69 ± 1.22 mg/mL soluble proteins. WPI hydrolysate showed alterations in binding capacity over WPI. SDS-PAGE and particle size analysis confirmed the hydrolysis of WPI. Spectroscopic, thermal and crystallinity analyses showed typical properties of proteins with slight variations after hydrodynamic cavitation treatment. ABTS, DPPH and FRAP assays of WPI hydrolysate showed 7–66, 9–149, and 0.038–0.272 µmol/mL GAE at 1–10, 0.25–4, and 3–30 mg/mL concentration, respectively. Further, a considerable enhancement in fresh weight, chlorophyll, carotenoids, reducing sugars, total soluble sugars, soluble proteins content and total phenolics content was noticed during in vitro growth of sugarcane in WPI hydrolysate supplemented medium at 50–200 mg/L concentration over the control. The process cost (INR/kg) to hydrolyze WPI was also calculated.  相似文献   

8.
A system of ultrasound radiation coupled with Zn0 was applied to degrade diclofenac. The effects of initial pH, dosage of Zn0 and ultrasound density were investigated. To further explore the mechanism of the microcosmic reaction, the fresh and used Zn0 powders were characterized by SEM, XRD and XPS. Radical scavengers were used to determine the oxidation performance of strong oxidizing free radicals on diclofenac, including hydroxyl radicals and superoxide radicals. The results showed that the optimum removal of diclofenac reached to over 85% at pH of 2.0 in 15 min, with Zn0 dosage of 0.1 g/L and ultrasound density of 0.6 W/cm3. TOC removal of 72.6% in 15 min and dechlorination efficiency of diclofenac reached 70% in 30 min. Characterization results showed that a ZnO membrane was generated on the surface of Zn particles after use. According to the mass spectrometry results, several possible pathways of diclofenac degradation were proposed, and most diclofenac was turned into micro-molecules or CO2 finally. The synergistic effect of US/Zn0 in the reactions led to a proposed degradation mechanism in which zinc could directly attack the target contaminant diclofenac because of its good reducibility with the auxiliary functions of ultrasonic irradiation, mechanical shearing and free radical oxidation.  相似文献   

9.
A characterization of the iron phases precipitated from aerated solutions of iron(II) sulfate heptahydrate was made using Mössbauer spectroscopy. The experimental conditions for the preparation of the samples were varied. The results are used to the further understanding of rust formation during atmospheric corrosion.  相似文献   

10.
Effects of TiO(2) powder addition on sonochemical destruction of 1,4-dioxane in water were investigated through comparison of a SiO(2) powder that had similar specific surface area. Results show that addition of TiO(2) is more effective for decomposition of 1,4-dioxane in water than addition of SiO(2). The contribution of photocatalytic destruction through sonoluminescence is not a dominant mechanism for acceleration of sonochemical reactions by adding TiO(2). Sonication of TiO(2)-added water generated thermally excited holes in this case. Moreover, intrinsic oxygen vacancies in TiO(2) surface play an important role in achieving high decomposition efficiency by producing cavitation. The addition of reduced TiO(2) powder increases both the ultrasonication energy that is consumed in water and the destruction efficiency of 1,4-dioxane.  相似文献   

11.
The ultrasonic degradation of p-nitrophenol (p-NP) in aqueous solution with CCl4 enhancement was studied. The effects of operating parameters such as CCl4 dosage, ultrasonic power, media temperature, the initial concentration of p-NP and initial pH value of the aqueous solution on the degradation of p-NP were investigated, and the enhancement mechanism of CCl4 for p-NP sonolysis was also discussed. The results showed that the sonochemical degradation of p-NP was obviously enhanced by adding CCl4. It attributed to the increase OH radicals concentration in the presence of CCl4 as a hydrogen atom scavenger, and the formation of some oxidizing agents such as free chlorine and chlorine-containing radicals. The degradation of p-NP follows a pseudo-first-order kinetics. The degradation rate of p-NP increased with decreasing the temperature, the initial pH value of the solution and decreasing the initial concentration of p-NP. It was also found that p-NP can be mineralized in this process.  相似文献   

12.
13.
The objective of this work was to develop a simple and efficient method to prepare waxy maize starch nanoparticles (SNPs) by hydrochloric acid (HCl) vapor hydrolysis combined with ultrasonication treatment. The size, morphology, thermal property, and crystal structure of the SNPs were systematically studied. HCl treatment introduces a smaller particle diameter of starch particles from 13.73 ± 0.93 μm to 1.52 ± 0.01–8.32 ± 0.63 μm. Further ultrasonication treatment formed SNPs that displayed desirable uniformity and near-perfect spherical and ellipsoidal shapes with a diameter of 150.65 ± 1.91–292.85 ± 0.07 nm. The highest yield of SNPs was 80.5%. Compared with the native starch, the gelatinization enthalpy changes of SNPs significantly decreased from 14.65 ± 1.58 J/g to 7.40 ± 1.27 J/g. Interestingly, the SNPs showed a wider melting temperature range of 22.77 ± 2.35 °C than native starch (10.94 ± 0.87 °C). The relative crystallinity of SNPs decreased to 29.65%, while long-time ultrasonication resulted in amorphization. HCl vapor hydrolysis combined with ultrasonication treatment can be an affordable and accessible method for the efficient large-scale production of SNPs. The SNPs developed by this method will have potential applications in the food, materials, and medicine industries.  相似文献   

14.
In this paper the results of DC-conductivity investigation of 1,4-cis-polybutadiene thin films doped with 5% weight of silicon carbonate (SiC) of nanocrystalline form with the size of grains being about 20 nm are presented. The aim of the study was to receive a knowledge about the electrical properties and DC-conductivity mechanisms depending on film thickness, temperature and electric field magnitude. The investigated films thickness ranged from 1 to 12 μm. The investigations were carried out for both undoped and doped with nanocrystalline SiC polymers. The current flow through the material bulk changed from 10−12 to 10−4 A with applied electric fields of 0 to 3 × 107 V/m and temperature of the film varying from 15 to 325 K. It was observed that the magnitude of the current flow through the investigated material bulk is governed by a phase state of the polymer and the presence of SiC in the bulk. The charge transport through the material bulk is controlled by the Poole-Frenkel phenomenon as well as by hopping. The determined activation energies were between kT and 0.36 eV.  相似文献   

15.
In the forest biorefinery, hydrolysis lignin (HL) is often dissolved with high concentration NaOH solution, followed by acid precipitation to obtain purified HL. For the first time, this study evaluates the effect of ultrasound (US) on the dissolution of industrially produced HL in aqueous NaOH solutions and the acid precipitation yield of HL. The solubility of HL in mild aqueous NaOH solutions was studied with and without US treatment at 20 kHz concerning the solid-to-liquid ratio, molecular weight of dissolved fractions and structural changes in dissolved HL. Results showed that the solubility of HL at 25 °C was strongly dependent on NaOH concentration. However, the US treatment significantly improved the solubility of HL, reaching a solubility plateau at 0.1 NaOH/HL ratio. US treatment enhanced the solubilization of HL molecules with higher MW compared to conventional mixing. The increase of HL solubility was up to 30 % and the recovery yield of purified lignin with acid precipitation was 37 % higher in dilute NaOH solution. A significant result was that the Mw of dissolved HL in homogeneous alkali solutions decreased with US treatment. SEC, HSQC and 31P NMR analyses of dissolved HL characteristics showed that both, the mechanoacoustic and sonochemical solubilization pathways contribute to the dissolution process. However, US does not cause major changes in the HL structure compared to the native lignin. Indeed, US technology has the potential to advance the dissolution and purification of HL in biorefineries by reducing the amount of chemicals required; thus, more controlled and environmentally friendly conditions can be used in HL valorization.  相似文献   

16.
We have used spectrophotometry to study self-association and complexation with DNA by organic heterocyclic compounds in the acridine and phenothiazine series: proflavin, thionine, and methylene blue. Based on the experimental concentration dependences of the molar absorption coefficient of the molecules in an aqueous buffer solution (0.01 M NaCl, 0.01 M Na2EDTA, 0.01 M Tris, pH 7.4, T = 298 K), we have determined the equilibrium dimerization constants for the dyes and the DNA complexation parameters using the Scatchard and McGhee-von Hippel models. The observed increase in the cooperativity parameters as the dimerization constants of the ligands increase allowed us to hypothesize that the same interactions occur between dye molecules adsorbed on DNA as in their self-association. The equilibrium DNA-binding constants for the ligands, obtained using the McGhee-von Hippel cooperative model, are (20.9 ± 2.7)·103 M−1 for proflavin and (33.8 ± 4.1)·103 M−1 for thionine. Using the Scatchard model, taking into account intercalation and “external” binding of ligands with DNA, we determined the DNA complexation constants for methylene blue: (26.4 ± 4.6)·103 and (96 ± 17)·103 M−1 respectively. Based on analysis of the data obtained, we hypothesized that the predominant type of binding with DNA is intercalation binding in the case of proflavin and thionine, and “external” binding with the DNA surface in the case of methylene blue. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 242–249, March–April, 2008.  相似文献   

17.
The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2+, C3H6O+, C3H5O+, C2H5O+, C2H4O+, C2H3O+, C3H5+, CH3O+, C2H6+, C2H5+/CHO+, C2H4+ and CH3+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.  相似文献   

18.
Chemical tags such as anthracene can be attached to a molecular analyte and serve as chromophores for 7.87 eV laser postionization by lowering the overall ionization potential of the tagged molecular complex. Fluorescein and tryptophan are demonstrated as two new tags for 7.87 eV laser postionization of various amino acids and peptides. Other molecular species that are efficient fluorescence probes should also serve as tags for 7.87 eV postionization since they display highest occupied molecular orbitals with extended π-conjugation that lead to ionization potentials below this photon energy and an ability to stabilize the net positive charge of the radical cations. This technique is demonstrated here for laser desorbed species, but is also applicable to keV ion sputtered neutrals. Overall, 7.87 eV laser postionization of derivatized species promises to expand the capabilities of mass spectrometric surface analysis.  相似文献   

19.
We have studied self-association of aromatic molecules of the thiazine dye methylene blue in aqueous solution, using a dimer model. We have determined the dimerization equilibrium constant for the dye molecules KD = 3900 ± 800 M−1 at T = 293 K. We have decomposed the experimental spectrum into dimer and monomer components. Using the ratio of the molar absorption coefficients for two absorption bands of the dimer spectrum, we obtained the “average” value of the angle between the electronic transition moments of the molecules in the dimers, α = 48°. We have studied heteroassociation of methylene blue (MB) and 1,3,7-trimethylxanthine (caffeine) molecules in aqueous solution. We have calculated the heteroassociation constant as 200 ± 34 M−1. We conclude that heteroassociation of methylene blue and caffeine molecules leads to a lower effective dye concentration in solution, which hypothetically may affect its biological activity. We have determined the values of the Gibbs free energy, the enthalpy, and the entropy for dimerization of methylene blue molecules: ΔG293 = −(20 ± 3) kJ/mol, ΔH = −(25 ± 9) kJ/mol, Δ S293 = −(17 ± 6) J/mol·K; and for methylene blue-caffeine heteroassociation: ΔG293 = −(13 ± 3) kJ/mol, ΔH = −(14 ± 10) kJ/mol, ΔS293 = −(2.4 ± 0.2) J/mol·K, respectively. We have shown that the methylene blue aggregates and the heteroassociates with caffeine are predominantly stabilized by dispersion interactions between the chromophore molecules in the associates. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 2, pp. 158–163, March–April, 2006.  相似文献   

20.
Two component (ethidium bromide–caffeine, ethidium bromide–DNA) and three component (ethidium bromide–caffeine–DNA) systems in aqueous saline (0.01 M NaCl) phosphate buffer solutions (pH 6.86, T = 298 K) are studied spectrophotometrically. The equilibrium constants for dimerization of caffeine, K D  = 1.22 ± 2 M−1, and for heteroassociation of ethidium bromide with caffeine, K = 71 ± 8 M−1, in ethidium bromide–caffeine systems are determined. When the concentration of caffeine is increased, the dynamic equilibrium of the solution shifts toward formation of heterocomplexes which are, presumably, stabilized by dispersive and hydrophobic interactions of chromophores. The equilibrium parameters for ethidium bromide complex formation with DNA are calculated: the coupling constant for the dye with the biopolymer, K 1 = (232 ± 16)⋅103 M−1, and the number of base pairs of the biopolymer participating in bonding with the ligand, n 1 = 3.6 ± 0.2, are calculated. Given these values, it is suggested that under these experimental conditions there are two types of bonding between ethidium bromide and the nucleic acid — intercalation and “external” bonds. A McGhee–von Hippel model for a three component system and the numerical values of the parameters for molecular complex formation in two component systems are used to calculate the bonding constant for caffeine with DNA, K 2 = 127 ± 30 M−1, and the number of base pairs of DNA which bond with caffeine, n 2 = 1.7 ± 0.2. The concentrations of ethidium bromide and caffeine in the composition of two and three component complexes are calculated as functions of the nucleic acid content in the solution. An analysis of the concentration dependences shows that heteroassociation of ligands has a significant effect on the reduction in the concentration of ethidium bromide–DNA complexes in a three component system for low DNA concentrations, while at high DNA concentrations the bonding of caffeine with the biopolymer has this effect. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 143–151, January–February 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号