首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fresh apple juice treated with ultrasound (for 0, 30, 60 and 90 min, at 20 °C, 25 kHz frequency) was evaluated for different physico-chemical, Hunter color values, cloud value, antioxidant capacity, scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, ascorbic acid, total phenolics, flavonoids, flavonols and microbial characteristics. No significant effect of sonication was observed on pH, total soluble solids (°Brix) and titratable acidity of apple juice. Sonication significantly improved ascorbic acid, cloud value, phenolic compounds, antioxidant capacity, DPPH free radical scavenging activity and differences in Hunter color values. Moreover, significant reduction in microbial population was observed. Findings of the present study suggested that sonication treatment could improve the quality of apple juice. It may successfully be employed for the processing of apple juice with improved quality and safety from consumer’s health point of view.  相似文献   

2.
This study evaluated the combined effect of blanching and sonication treatment on selected quality parameters of bottle gourd juice (BGJ). Bottle gourd cubes were blanched and juice was extracted. Effect of frequency (20–50 kHz), amplitude (50–90%) and time (10–30 min) was also studied on quality parameters like titratable acidity (TA), pH, total soluble solids (TSS), physical stability (PS), ascorbic acid (AA), total phenolics (TP), total carotenoids (TC), browning index (BI), total plate count (TPC) and yeast & mold count (Y&M) of BGJ to derive the level of these parameters. Combined effect of blanching followed by sonication (BFS) showed significant (P  0.05) change in all quality parameters except TA. Highest percentage of TSS (5.9 °B), PS (2%), AA (18.99 mg/100 g), TP (1010 mg/100 g) and TC (5.8 mg/100 g) was observed at 70% amplitude, 50 kHz frequency and 20 min. Results suggested 70% amplitude, 50 kHz frequency and 20 min as best treatment conditions for processing of BGJ. Microstructure examination, transmission electron microscopy (TEM) and laser diffraction analysis of BGJ showed significant change in particle size and distribution. Moreover, TEM of blanched and sonicated samples of BGJ also showed significant (P  0.05) change in microbial profile.  相似文献   

3.
Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm−3) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm−3) at 20, 40 and 60 °C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, °Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60 °C for 10 min, and the microbial population was completely inactivated at 60 °C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60 °C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms.  相似文献   

4.
A study was initiated with the objective of evaluating the effects of sonication treatment on quality characteristics of apple juice such as polyphenolic compounds (chlorogenic acid, caffeic acid, catechin, epicatechin and phloridzin), sugars (fructose, glucose and sucrose), mineral elements (Na, K, Ca, P, Mg, Cu and Zn), total carotenoids, total anthocyanins, viscosity and electrical conductivity. The fresh apple juice samples were sonicated for 0, 30 and 60 min at 20 °C (frequency 25 kHz and amplitude 70%), respectively. As results, the contents of polyphenolic compounds and sugars significantly increased (P < 0.05) but the increases were more pronounced in juice samples sonicated for 30 min whereas, total carotenoids, mineral elements (Na, K and Ca) and viscosity significantly increased (P < 0.05) in samples treated for 60 min sonication. Losses of some mineral elements (P, Mg and Cu) also occurred. Total anthocyanins, Zn and electrical conductivity did not undergo any change in the sonicated samples. Findings of the present study suggest that sonication technique may be applied to improve phytonutrients present naturally in apple juice.  相似文献   

5.
Apple juice (13 °Brix) spiked with malathion and chlorpyrifos (2–3 mg l−1 of each compound) was treated under different ultrasonic irradiations. Results showed that ultrasonic treatment was effective for the degradation of malathion and chlorpyrifos in apple juice, and the output power and treatment time significantly influenced the degradation of both pesticides (p < 0.05). The maximum degradations were achieved for malathion (41.7%) and chlorpyrifos (82.0%) after the ultrasonic treatment at 500 W for 120 min. The degradation kinetics of both pesticides were fitted to the first-order kinetics model well (R2  0.90). The kinetics parameters indicated that chlorpyrifos was much more labile to ultrasonic treatment than malathion. Furthermore, malaoxon and chlorpyrifos oxon were identified as the degradation products of malathion and chlorpyrifos by gas chromatography–mass spectrometry (GC–MS), respectively. The oxidation pathway through the hydroxyl radical attack on the PS bond of pesticide molecules was proposed.  相似文献   

6.
Among different novel technologies, sonochemistry is a sustainable emerging technology for food processing, preservation, and pesticide removal. The study aimed to probe the impact of high-intensity ultrasonication on chlorothalonil fungicide degradation, reduction pathway, and bioactive availability of spinach juice. The chlorothalonil fungicide-immersed spinach juice was treated with sonication at 360 W, 480 W, and 600 W, 40 kHz, for 30 and 40 min at 30 ± 1 °C. The highest reduction of chlorothalonil fungicide residues was observed at 40 min sonication at 600 W. HPLC-MS (high-performance liquid chromatography-mass spectroscopy) analysis revealed the degradation pathway of chlorothalonil and the formation of m-phthalonitrile, 3-cyno-2,4,5,6-tetrachlorobenamide, 4-dichloroisophthalonitrile, trichloroisophtalonitrile, 4-hydoxychlorothalonil, and 2,3,4,6-tetrachlorochlorobenzonitrile as degradation products. High-intensity sonication treatments also significantly increased the bioavailability of phenolic, chlorophyll, and anthocyanins and the antioxidant activity of spinach juice. Our results proposed that sonication technology has excellent potential in degrading pesticides through free radical reactions formation and pyrolysis. Considering future perspectives, ultrasonication could be employed industrially to reduce pesticide residues from agricultural products and enhance the quality of spinach juice.  相似文献   

7.
In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.  相似文献   

8.
Ozonation (OZ) is an important advanced oxidation process to purify water and wastewater. Because of the lower solubility and instability of ozone (O3), selective oxidation and dependence on pH value, the industrial applications of OZ have been hindered by the following disadvantages: incomplete removal of pollutants, lower mineralization efficiency and the formation of toxic by-products. Meanwhile, OZ seems to have higher processing costs than other technologies. To improve the treatment efficiency and O3 utilization, several combined processes, such as H2O2/O3, UV/O3, and Cavitation/O3, have been explored, while the combined method of ultrasonication (US) with OZ is a promising treatment technology with a complex physicochemical mechanism. In US alone, the sonolysis of water molecules can produce more powerful unselective oxidant hydroxyl radicals (OH), and directly cause the sonochemical pyrolysis of volatile pollutants. In US/OZ, US can promote the mass transfer of O3, and also drive the chemical conversion of O3 to enhance the formation of OH. Various layouts of US/OZ devices and the interactive effects of US/OZ (synergism or antagonism) on the degradation of various organics are illustrated in this review. The main factors, including US frequency, pH value, and radical scavengers, significantly affect the mass transfer and decomposition of O3, the formation of OH and H2O2, the degradation rates of organics and the removal efficiencies of COD and TOC (mineralization). As a result, US can significantly increase the yield of OH, thereby improving the degradation efficiency and mineralization of refractory organics. However, US also enhances the decomposition of ozone, thereby reducing the concentration of O3 in water and impairing the efficiency of selective oxidation with O3 molecules.  相似文献   

9.
A study was initiated with the objective of evaluating the effects of sonication treatment on important quality parameters of extract of Pinus massoniana pollen. Sonication of extract was done (frequency 20 kHz and various amplitude levels) for 10, 30, 50 min, respectively. As results, total polysaccharide, phenolics and flavonoids significantly increased (P < 0.05). And sonicated P. massoniana pollen displays strong immuno-stimulating activity by increasing proliferations of splenic lymphocytes and subsets of CD4+ T cells (CD3+CD4+), CD8 T cells (CD3+CD8+), and increased Ig secretion. Sonicated P. massoniana pollen also showed anti-tumor function by inhibition of tumor cell proliferation, inhibition of ROS production, up-regulation of GSH/GSSG ration, up-regulating the gene expression of P53, Bax and down-regulating the gene expression of Bcl-2. Findings of the present study suggested the sonication treatment of P. massoniana pollen could improve the quality and bioactivity of P. massoniana pollen, indicating that sonication is effective in processing of pollen and could be a potential process in tumor prevention and treatment.  相似文献   

10.
Sonication is an emerging sustainable and eco-friendly technology that has been broadly explored in food processing and preservation. Sonication has the edges of low energy consumption and high efficiency than conventional decontamination methods and would not pass on secondary pollutants. In the current research, we analyzed the impact of sonication on anilazine fungicide reduction, bioactive compound, antioxidant activity, colloidal stability, and enzymatic and microbial load of tomato juice. Sonicated treatments were carried out at 40 kHz, 480 W, 30 ± 2 °C for 0, 8, 16, 24, 32, and 40 min in an ultrasonic bath cleaner. The GC–MS outcomes revealed that the anilazine maximum reduction in tomato juice attained 80.52 % at 40 min of sonication. The anilazine concentration reduced significantly (p ≤ 0.05) with increased sonication time. In contrast, sonication treatments have acquired the highest TFC, TPC, ascorbic acid, carotenoids, lycopene, ABTS, and ORAC assay than the untreated sample. The Sonication process significantly improved (p ≤ 0.05) colloidal stability by reducing particle size distribution, apparent viscosity, and sedimentation index. Sonication prolonged tomato juice's shelf life by reducing the total viable count from 6.31 to 1.91 log CFU/mL. Polygalacturonase and pectin methyl esterase of the sonication sample at 40 min were inactivated by 44.32 % and 64.2 %, respectively. Considering this issue from a future perspective, sonication processing can be used industrially to enhance fruit juice's nutritional properties and shelf life and reduce pesticides and other organic residues.  相似文献   

11.
Sonication and dielectric barrier discharge (DBD) plasma are sustainable emerging food processing technologies. The study investigates the impact of sonication, DBD-plasma, and thermal treatment (TT) on wheat sprout juice. The obtained results indicated a significant (p < 0.05) increase in chlorophyll, total phenolics, flavonoids, DPPH assay, and ORAC assay after DBD-plasma (40 V) and sonication (30 mins) treatment as compared to TT and untreated samples. Both emerging technologies significantly (p < 0.05) reduce the polyphenol oxidase and peroxidase activities, but the TT sample had the highest reduction. Moreover, the synergistic application of both technologies significantly reduced the E. coli/Coliform, aerobics, yeast and mold up to the 2 log reduction, but the TT sample had a complete reduction. DBD-plasma and sonication processing significantly decreased (p < 0.05) the particle size, reducing apparent viscosity (η) and consistency index (K); while increasing the flow behavior (n), leading to higher stability of wheat sprout juice. To assess the impact of emerging techniques on nutrient concentration, we used surface-enhance Raman spectroscopy (SERS) as an emerging method. Silver-coated gold nano-substrates were used to compare the nutritional concentration of wheat sprout juice treated with sonication, DBD-plasma, and TT-treated samples. Results showed sharp peaks for samples treated with DBD-plasma followed by sonication, untreated, and TT. The obtained results, improved quality of wheat sprout juice, and lower microbial and enzymatic loads were confirmed, showing the suitability of these sustainable processing techniques for food processing and further research.  相似文献   

12.
Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60 s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4–9%) and polyphenols (30–35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(4):1343-1348
A study was initiated with the objective of evaluating the effects of sonication treatment on important quality parameters of extract of Bursa of Fabricius. Sonication of extract was done (frequency 20 kHz and various amplitude levels) at 0 °C for 10 min, 30 min, 50 min, respectively. As results, the yield of bursa peptides significantly increased (p < 0.05). Then we found sonicated bursa extract promoted the content of bursin and the CFU pre-B formation, exerted immunomodulatory function on antigen-specific immune responses in C57/BL6 mice immunized with inactivated Japanese encephalitis b virus (JEV) vaccine, including enhancing JEV-specific antibody and cytokine production, T-cell immunophenotyping and lymphocyte proliferation. Findings of the present study suggested the sonication treatment of Bursa of Fabricius could improve the yield as well as the quality of bursa peptides, indicating that sonication is effective in processing of bursa extract and could be a potential process for future immuno-pharmacological use.  相似文献   

14.
This study was aimed at reducing patulin content of apple juice using a non-thermal method, namely pulsed-high hydrostatic pressure (p-HHP). Commercially available clear apple juice was contaminated artificially with different concentrations of patulin (5, 50 and 100?ppb). Then, the samples were processed 5?min at different pressure treatments (300–500?MPa) in combination with different temperatures (30–50°C) and pulses (6 pulses?×?50?s and 2 pulses?×?150?s). To compare the impact of pulses, single pulse of high hydrostatic pressure (HHP) treatment was also applied with the same pressure/temperature combinations and holding time. Results indicated that pressure treatment in combination with mild heat and pulses reduced the levels of patulin in clear apple juice up to 62.11%. However, reduction rates did not follow a regular pattern. p-HHP was found to be more effective in low patulin concentrations, whereas HHP was more effective for high patulin concentrations. To the best of our knowledge, this is the first study using p-HHP to investigate the reduction of patulin content in apple juice.  相似文献   

15.
Sterilization plays an important role in extending the shelf-life of apple juice; however, it also affects the nutritional and flavor profile of the juice. This study was initiated to evaluate the effects of several common sterilization methods (conventional pasteurization, microwave sterilization, ultrasonic sterilization, and ultra-high-pressure sterilization) on some important quality parameters of apple juice. The results showed that the content of soluble pectin and soluble protein in juice decreased significantly after ultra-high-pressure sterilization. Sonication was found to be effective in increasing the level of ascorbic acid in apple juice. The sugar:acid ratio increased significantly after pasteurization, microwave sterilization, and ultra-high-pressure sterilization, which changed the taste of juice. Microwave sterilization caused the highest volatile compound loss, while ultra-high-pressure sterilization led to a higher retention rate of volatile compounds in juice. This study could be helpful in seeking suitable sterilization methods retaining the quality of cloudy apple juice.  相似文献   

16.
In order to obtain noni juice with high yield and good quality, the effect of combined extraction technique of enzymatic treatment (EZ) and ultrasonication (US) on the overall quality of noni juice was investigated. Moreover, the extraction performance of the EZ-US combined extraction technique was compared with that of EZ-based extraction and the US-based extraction. Response surface methodology (RSM) was designed to optimize the parameters of ultrasonic treatment, by taking consideration of the extraction efficiency, quality parameters and bioactive ingredients of noni juice. The results indicated that combined ultrasonic and enzymatic treatment achieved a synergistic effect on promoting the quality of noni juice. The maximum juice yield of 67.95 % was obtained under ultrasonication for 10 min at 600 W after enzymatic treatment (EZU). In addition, EZU-treated juice exhibited the highest contents of total phenolic and flavonoid, which were 148.19 ± 2.53 mg gallic acid/100 mL and 47.19 ± 1.22 mg rutin/100 mL, respectively, thus contributing to better antioxidant activity. Moreover, the EZU treatment significantly reduced the particle size of noni juice, and improved its suspension stability and rheological properties. FTIR results indicated that the treatments did not bring major changes in the chemical structure and the functional groups of compounds in noni juice. Therefore, EZU treatment can be successfully applied to the extraction of noni juice with better nutritional properties and overall quality.  相似文献   

17.
The study determined the efficacy of Dynashock wave power ultrasound as an alternative processing technique for apple juice against a number of pathogenic and spoilage microorganisms. The effects of several implicit, intrinsic and extrinsic properties on the Dynashock wave inactivation of the microorganisms were also investigated. Results showed that acid adaptation increased the resistance of Escherichia coli O157:H7 and Salmonella spp. but decreased that of Listeria monocytogenes. Spoilage yeast mixed inoculum composed of Debaryomyces hansenii, Torulaspora delbrueckii, Clavispora lusitaniae, Pichia fermentans and Saccharomyces cerevisiae was found to be more resistant than any of the adapted or non-adapted pathogens. Among the individual, acid-adapted E. coli O157:H7, the MN-28 isolate was found most resistant; while three other individual isolates had greater resistance than the composited E. coli inoculum. Increased in pulp content decreased the efficacy of Dynashock waves, but co-treatment with ultraviolet-C rays significantly enhanced inactivation in the cloudy apple juice. The results demonstrated the potential of Dynashock wave technology, together with other antimicrobial hurdles as alternative juice processing technique/s.  相似文献   

18.
Recovery of lactose from the whey using sonocrystallization was studied experimentally. The effect of sonication medium and irradiation power levels was evaluated using three different ultrasonic equipments. Effects of various parameters such as sonication time, pH of the medium, antisolvent (acetone and acetone-ethanol mixture) and concentration of lactose were determined. The optimal parametric conditions were analyzed using differential scanning calorimetry, thermogravimetric analysis, particle size distribution, and zeta potential measurements. Overall, the highest lactose recovery was obtained using a mixture of acetone and ethanol as antisolvent in bath sonication as well as atomization process.  相似文献   

19.
The aim of the study was to assess the influence of ultrasound (frequency 20 kHz, amplitude 70%, power 140 W for 10 min), heating (80 °C, 5 min) and enzymatic pre-treatment of mash (50 °C, Rohapect 10L at a dose of 0.23 g/1000 g, maceration time 60 min) on the yield, the content of phenolic compounds (including anthocyanins), ascorbic acid, and the antioxidative capacity of Berberis amurensis juice. Additionally, the polyphenols profile of this raw material and juices was identified. 25 phenolic compounds were identified in the fruit and 24 in juices. The content of phenolics in the fruit was 636 mg/100 g. Chlorogenic acid, 4-hydroxybenzoate and quercetin-3-O-glicoside were predominant. The content of anthocyanins in the fruit was 217 mg/100 g f.w., where peonidin-3-O-glucoside (98%) was predominant. The content of ascorbic acid amounted to 16.60 mg/100 g. The yield of the barberry juice pressing process ranged from 56% to 60% – there were no differences between the mash treatment methods. The enzymatic and thermal treatment of the mash resulted in the highest content of phenolic compounds in the juice. The sonication resulted in the highest content of anthocyanins, including peonidin-3-O-glucoside, as the main anthocyanin. The thermal treatment of the mash resulted in a lower loss of ascorbic acid than the other methods. The juice from the mash subjected to pectinolysis or heat treatment exhibited the highest antioxidative capacity.  相似文献   

20.
《Ultrasonics sonochemistry》2014,21(3):1002-1009
The effects of temperature, time, solvent and sonication conditions under air and Argon are described for the preparation of micron and sub-micron sized vermiculite particles in a double-jacketed Rosett-type or cylindrical reactor. The resulting materials were characterized via X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared (FTIR) Spectroscopy, BET surface area analysis, chemical analysis (elemental analysis), Thermogravimetry analysis (TGA) and Laser Granulometry. The sonicated vermiculites displayed modified particle morphologies and reduced sizes (observed by scanning electron microscopy and laser granulometry). Under the conditions used in this work, sub-micron sized particles were obtained after 5 h of sonication, whereas longer times promoted aggregation again. Laser granulometry data revealed also that the smallest particles were obtained at high temperature while it is generally accepted that the mechanical effects of ultrasound are optimum at low temperatures according to physical/chemical properties of the used solvent. X-ray diffraction results indicated a reduction of the crystallite size along the basal direction [0 0 1]; but structural changes were not observed. Sonication at different conditions also led to surface modifications of the vermiculite particles brought out by BET surface measurements and Infrared Spectroscopy. The results indicated clearly that the efficiency of ultrasound irradiation was significantly affected by different parameters such as temperature, solvent, type of gas and reactor type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号