首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25?µg?L?1 with an average of 17.91?µg?L?1 and 16.06?±?0.97 to 57.35?±?1.28?Bq?L?1 with an average of 32.98?±?2.45?Bq?L?1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11?Bq?L?1 (USEPA) and all the values are within the European Commission recommended limit of 100?Bq?L?1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100?µSv?y?1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.  相似文献   

2.
Concentration of 222Rn was determined in selected natural spring and tap water samples collected during spring and summer seasons from Kastamonu, Turkey. The aim of this work was to produce a map of the radon concentrations in water sources of the province and to determine any potential radiological risk for the local population. Radon measurements were performed by an AlphaGUARD radon gas analyser. The average radon concentrations were found to vary from 0.39±0.02 to 12.73±0.39 Bq l?1 for natural springs and from 0.36±0.04 to 9.29±0.45 Bq l?1 for tap water in spring, from 0.50±0.09 to 19.21±1.00 Bq l?1 for natural springs and from 0.31±0.03 to 13.14±0.38 Bq l?1 for tap water in summer. Furthermore, the results are compared with international recommendations and concentrations reported for other countries. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of the 222Rn present in these waters are expected to range from 0.93 to 32.54 μSv y?1 in summer and from 0.80 to 49.09 μSv y?1 in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号