首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, several up-conversion luminescence agents (Er3+:Y3Al5O12, Er3+:Yb0.2Y2.79Al5O12, Er3+:Yb0.2Y2.79Al5N0.01O11.99, Er3+:Yb0.2Y2.79Al5F0.01O11.99 and Er3+:Yb0.2Y2.79Al5N0.01F0.01O11.98) were synthesized using sol–gel method. And then, the corresponding sonocatalyst (Er3+:Y3Al5O12/TiO2, Er3+:Yb0.2Y2.79Al5O12/TiO2, Er3+:Yb0.2Y2.79Al5N0.01O11.99/TiO2, Er3+:Yb0.2Y2.79Al5F0.01O11.99/TiO2 and Er3+:Yb0.2Y2.79Al5N0.01F0.01O11.98/TiO2 coated composites) were prepared by sol–gel coating process. The synthesized up-conversion luminescence agents and their coated composites were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). And that, the sonocatalytic activities were detected through the degradation of Azo Fuchsine (AF) dye in aqueous solution by UV–vis spectroscopy. Some key influences such as heat-treated temperature and heat-treated time on the sonocatalytic activity of Er3+:YbaY2.99−aNxFyAl5O12−xy/TiO2 coated composite, as well as ultrasonic irradiation time and initial dye concentration on the sonocatalytic degradation were studied. The results showed that the doping of Yb, N and F into Er3+:Y3Al5O12/TiO2 significantly enhanced the sonocatalytic activity of Er3+:Y3Al5O12/TiO2 coated composite in the degradation of organic dyes. Particularly, Er3+:Yb0.2Y2.79Al5N0.01F0.01O11.98/TiO2 coated composites with 3:7 M ratio heat-treated at 550 °C for 60 min showed the highest sonocatalytic activity. At last, the experiments also indicated that the Er3+:Yb0.2Y2.79Al5N0.01F0.01O11.98/TiO2 coated composites has a good sonocatalytic activity to degrade other organic dyes under ultrasonic irradiation.  相似文献   

2.
C and Cr co-doped TiO2 (C-Cr-TiO2) sonocatalyst were synthesized by doping TiO2 with glucose and CrCl3 in a sol-gel method. The samples were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, and X-ray photoelectron emission spectroscopy (XPS). C and Cr were detected by XPS analysis. The influence of dopants on the properties and sonocatalytic activity of TiO2 was studied. The sonodegradation products of methylene blue were analyzed by UV-vis absorption spectroscopy. The presence of C-Cr-TiO2 catalysts substantially enhanced the sonocatalytic degradation of MB in aqueous suspensions. The possible sonocatalytic mechanisms were also discussed.  相似文献   

3.
The InVO4/TiO2 nanojunction composites with different weight ratio of 1:10, 1:25, 1:50 and 1:100 were successfully constructed using an ion impregnate method, followed by calcining temperature 400 °C for 2 h in Ar. The sono- and photo-catalytic activities of the InVO4/TiO2 nanojunction composites were evaluated through the degradation of methyl orange (MO) in aqueous solution under ultrasonic and visible light irradiation, respectively. The experimental results determined that the (1:50) InVO4/TiO2 nanojunction composite has exhibited the highest sonocatalytic activity. It can be ascribed to vectorial charge transfer at the co-excited InVO4/TiO2 interface under ultrasonic irradiation, results in the complete separation of electrons and holes. Interestingly, the (1:25) InVO4/TiO2 nanojunction composite displayed superior photocatalytic activity for MO degradation under visible light, indicating that InVO4 as a narrow band gap sensitizer can expand photocatalytic activity of TiO2 to visible region, and the charge transfer can be formed from high energy level of InVO4 conduction band to the low energy level of TiO2 conduction band in a present of excited InVO4 alone under visible light irradiation. The sono- and photo-catalytic activities of the InVO4/TiO2 nanojunction composites were found to be dependent significantly on different InVO4 contents, which can be explained by the influence of charge transfer on the basis of the work functions of different catalysis mechanism.  相似文献   

4.
In this study, the theoretical structures of armchair (6, 6) and zigzag (12, 0) TiO2 nanotubes (TiNTs) were constructed by rolling the (101) layer of an anatase TiO2 crystal. The (101) layer was made using Materials Studio (MS) by cutting the cleave plane (101) of the anatase TiO2 crystal. Based on these structures, the basic properties of TiO2 nanotubes were investigated using MS. Molecular dynamics simulations were performed using the software NAMD to investigate the status and permeation of water through the TiO2 nanotubes. Structure analysis shows that both the inner and outer walls of the structures were terminated with oxygen atoms. The thicknesses of single tube walls are smaller than that of a perfect triple layer (2.20?Å) in bulk anatase TiO2. With regard to the bulk Ti–O bond length, the Ti–O bonds in the outer layer are elongated, and are shortened in the inner layer. Molecular dynamics simulation shows that the water molecules in the nanotubes move back and forth, as in one-dimensional Brownian motion. Moreover, the penetration properties of TiNTs are associated with their radii, with the TiNT with larger radii having better penetration properties. Thus, when used in drug delivery or filtration systems, armchair TiNT has a better effect than zigzag TiNT.  相似文献   

5.
CdS/TiO2 nanocomposites were prepared via a simple wet chemical method, and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their ability to degrade Acid Rhodamine B was investigated under visible light irradiation. The results indicate that CdS/TiO2 nanocomposite with a mass ratio of 4:1(TiO2:CdS) showed high photocatalytic activity and the CdS loaded on TiO2 nanotube surface exhibited a hexagonal phase. The dispersion of CdS on TiO2 nanotube surface had an important effect on the degradation efficiency of pollutant, which provides a strategy for practical industry application.  相似文献   

6.
Ti6Al7Nb has been used as an implant material because of its good corrosion resistance and high mechanical properties. However, the presence of aluminium (Al), which may lead to ostemalacia, anaemia and nervous system disorders, limited its wide clinical use. In this study, a titanium oxide (TiO2) nanoporous layer was fabricated on a Ti6Al7Nb alloy using an electrochemical anodic oxidation method. The structure of the TiO2 nanoporous layer was examined by scanning electron microscopy. The chemical compositions of the samples were analysed by X-ray photoelectron spectroscopy (XPS). Biocompatibility was evaluated by culturing rat osteoblast cells. The result showed that TiO2 nanoporous layers comprise a mixed oxide containing TiO2 and a small amount of nobium oxides (Nb2O5) and almost no elemental aluminium. The outer layer of the TiO2 nanoporous layer comprises highly ordered nanotubes and the inner layer forms disordered nanopores. The TiO2 nanoporous layer could support the adhesion, proliferation, differentiation and gene expression of osteoblast cells. Therefore, a TiO2 nanoporous layer could enhance the biocompatibility of Ti6Al7Nb alloy and is as a promising candidate for Ti6Al7Nb alloy implants.  相似文献   

7.
Highly ordered TiO2 nanotubes with different tube length were fabricated by anodization using C2H2O4·2H2O containing 0.5 wt.% NH4F (electrolyte A) and anhydrous dimethyl sulfoxide containing 1% HF (electrolyte B), respectively. Then cathodic reduction method was used to dope Pt in TiO2 nanotubes in chloroplatinic acid. The results indicated that cathodic reduction could efficiently platinize TiO2 nanotubes. Pt-doped TiO2 nanotubes with the longer length had the higher photocatalytic activity for degrading methyl orange under UV and visible irradiation. The longer tube length has a positive effect on the photocatalytic activity of Pt-doped TiO2 nanotubes. Besides, as the content of anatase further decreases, the photocatalytic activity drops gradually due to the reduction reaction in the surface area.  相似文献   

8.
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C–700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C–700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.  相似文献   

9.
CdS-TiO2 and CdS-C60/TiO2 were prepared using C60, cadmium acetate dehydrate [(CH3COO)2Cd·2H2O], sodium sulfide (Na2S·5H2O) and titanium (IV) n-butoxide by a sol-gel method. The prepared sonocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM). A rhodamine B (RhB) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an RhB solution was observed using the CdS-C60/TiO2 composites under ultrasonic irradiation. C60 coupled CdS-TiO2 can enhance the Brunauer-Emmett-Teller (BET) surface area and increase the decolorization rate for rhodamine B solution. The results also shows that increase the content of CdS can enhance the catalytic activity.  相似文献   

10.
Thermal behavior of amylose/TiO2 films under ultrasonic irradiation was investigated, and the final product of each process was applied to prepare amylose/TiO2 nanocomposite films. The effects of different degradation techniques on thermal behavior, crystallinity, and molecular weight distribution of amylose were surveyed. The evaluations of structural changes and thermal behaviors were performed by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry analysis, FT-IR spectroscopy, and scanning electron microscopy. The XRD results clarified that the crystalline shape of amylose molecules formed is an A-type crystal due to the sonophotocatalytic processing, while the FT-IR spectra does not approve any chemical change in amylose structure. The DSC data submitted a broad endothermic peak for amylose. In the case of high loading of nanoparticles, the endothermic analysis results and diffraction peaks for the sonophotocatalytic process were not significant. This indicates that the length of amylose chains through the sonophotocatalytic degradation became smaller. An increase at the loading of TiO2 improved the hydrophilic properties of amylose/TiO2 films, which leads to the modification of water absorption behavior. Mechanical properties of amylose/TiO2 films were affected by the uniform dispersion of TiO2 in the polymer matrix.  相似文献   

11.
Mn2O3/TiO2 solid solution was prepared from two different oxides, manganese oxide (from KMnO4 and ethanol) and TiO2, these samples were characterized by BET, XRD, EDAX, SEM, FT-IR, ESR, XPS and UV–vis absorption spectroscopy. Photocatalytic activities of Mn2O3/TiO2 powder was investigated by photooxidation of different dyes like Rhodamine B, thymol blue, methyl orange and Bromocresol green under visible light (300-W Xe lamp; λ > 420 nm). The results show that the alloy of TiO2 with 1 mol% of Mn2O3 (MNT1) exhibit photocatalytic activity 3–5 times higher than that of P25 TiO2 for oxidation of various dyes (RB, TB, MO and BG). The average particle size and crystallite size of MNT1 were found to be 100 nm and 12 nm measured from SEM and XRD, respectively. The EPR spectra of the Mn2O3/TiO2 samples is a sharp five-line Mn(III) component centered on geff = 1.99.  相似文献   

12.
In this study, the TiO2 nanotubes were fabricated by electrochemical anodization in a NH4F/Na2SO4/PEG400/H2O electrolyte system. Ultrasonic wave (80 W, 40 kHz) was used to clean the surface of TiO2 nanotube arrays in the medium of water after the completion of the anodization. Surface morphology (FESEM) and X-ray diffraction spectrum of the nanotubes treated by sonication at 0 min, 9 min, 40 min and 60 min were compared. The experimental results showed that the precipitate on the surface of the nanotube arrays could be removed by the ultrasonic wave. The treating time had an influence on the precipitate removal and 9 min (corresponding to 12 Wh) is the suitable time for surface cleaning of the TiO2 nanotubes on this experimental condition.  相似文献   

13.
N doped TiO is nonmagnetic, in which spin-split impurity states are not induced near the Fermi energy (EF) by N dopant. N doped TiO2 along with transition-metal (TM) doped TiO is magnetic, in which spin-split impurity states are induced across EF. The magnetic moment is determined by the 3d4s electron configurations and the valence states of TM-dopant ions when they substitute Ti. Hence, the origin of ferromagnetism of N doped TiO2 and TiO is not closely related to the width of the band gaps of host oxides, but would be crucially related to that if the dopant can induce spin-split impurity states near EF.  相似文献   

14.
In this study, we prepared highly ordered TiO2 nanotube arrays on Ti through an anodizing process. Then, utilizing its proven antibacterial properties, we coated our TiO2 nanotubes (TiO2-NTs) with ZnO using the sol–gel method. We characterized the morphology, structure, and composition of the ZnO-coated TiO2 nanotubes (ZnO-TNTs) using field-emission scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy, respectively. We investigated surface topography and roughness of the coatings by atomic force microscopy operated in the tapping mode. Our results revealed impurity-free, anatase-phase TiO2 nanotubes that are uniformly coated with a ZnO layer. Finally, we tested the antibacterial activity of ZnO-TNTs against Staphylococcus aureus, and found ZnO-TNTs significantly improved the antibacterial properties of Ti implants. We conclude that ZnO-TNTs provide Ti with antibacterial activity, which highlights its potential in orthopedic and dental implants.  相似文献   

15.
Marta Gałyńska 《Molecular physics》2017,115(17-18):2209-2217
ABSTRACT

Quantum chemical calculations for two TiO2 nanoparticle cluster models (rutile–(TiO2)n with n = 20, and anatase–(TiO2)n with n = 92), selected to represent different nanoparticle size regimes, are used to elucidate structural influences on the electronic properties. Structural and electronic properties were obtained using a variety of computational methods and structure optimisation schemes, including a comparison of results for several different density functional theory functionals, as well as complementary Hartree–Fock and semi-empirical calculations. The results demonstrate a strong dependence of electronic properties, such as the optical band gap of importance for photoelectrochemical and photocatalytic applications, on the structure of the nanocrystal. From a methodological point of view, the calculations also provide useful information of broader significance about the viability of different computational schemes to efficiently obtain reliable computational results for intrinsically nanostructured materials.  相似文献   

16.
锐钛矿相纳米TiO2晶体生长动力学及生长过程控制   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了采用溶胶-凝胶法经由前驱物钛酸四异丙酯水解制备纳米TiO2结构相变及锐钛矿晶体生长动力学过程. 研究结果表明,在酸性条件下水解,由于高压热处理温度的变化导致锐钛矿向金红石相的结构相变,锐钛矿相纳米TiO2生长活化能在250℃以下和以上分别为(15.8±4.5)kJ/mol和(80.2±1.0)kJ/mol;而在碱性条件下水解的活化能值为(3.5±0.4)kJ/mol. 在不发生结构相变的条件下,酸性水解条件下锐钛矿相纳米TiO2生长速 关键词: 2')" href="#">纳米TiO2 锐钛矿 生长动力学 溶胶-凝胶法  相似文献   

17.
Singlet O2 produced upon photoexcitation is a very important oxidative reagent. The study on its reaction with nanotube might be useful not only to evaluate the stability of the nanotube upon air exposure and sunlight, but also to modify the properties of the nanotube. Considering the unique properties and wide applications of silicon carbide nanotube (SiCNT), in this paper, we performed extensive density functional theory (DFT) calculations to study the oxidation of a series of zigzag (n,0) SiCNTs (n=6 to 12) by singlet O2. It is found that the reaction process contains two steps, namely, (i) [2+2] cycloaddition of a singlet O2 to the Si–C bond, followed by (ii) the dissociation of the O–O bond, leading to the formation of an epoxide configuration with a highly exothermicity (>4.00 eV). Compared with pure SiCNT, the cycloaddition of singlet O2 on tube leads to the decrease of the band gap, while the formation of the stable epoxy structure render band gap increase. Our results indicate that the SiCNT is more prone to be degraded after exposure to air and sunlight.  相似文献   

18.
The formation mechanism of sodium titanate nanotubes via the morphological variation in particle-nanotube transition was investigated by means of TEM. The results show that the formation of sodium titanate nanotubes is carried out by self-assembling of dissolved fragments, the intermediate of TiO2 reacted with NaOH. The formation process occurs spontaneously in concentrated NaOH solution. After reacting for 20 h, the inside diameters of nanotubes range from 3.9 to 6.8 nm and some straight nanotubes form bundles with hundreds of nanometers long.  相似文献   

19.
The mechanism and kinetics of the reaction of hydrogen sulphide (H2S(1A1)) with hydroperoxyl radical (HO2(2A″)) on the lowest doublet potential energy surface have been theoretically studied. The potential energy surface for possible pathways has been investigated by employing Complete Basis Set (CBS), DFT, and CCSD(T) methods. Three possible pathways are suggested for the title reaction. The most probable entrance channel consists of formation of a hydrogen-bonded pre-reaction complex (vdw1) and two energised intermediates. Multichannel RRKM-Steady State Approximation and CVT calculations have been carried out to compute the rate constants over a broad range of temperature from 200?K to 3000?K to cover the atmospheric and combustion conditions and pressure from 0.1 to 2000?Torr. No sign of pressure dependence was observed for the title reaction over the stated range of pressure. We have shown that the major products of the title reaction are H2O2 and SH while at higher temperatures, formation of the other products such as H2O, HOS, HSOH and OH are feasible, too. Our calculated overall rate constant is in agreement with the reported experimental data in the literature.  相似文献   

20.
Presented are thermal desorption spectroscopy (TDS) measurements of iso-/n-butane adsorption on a variety of TiO2 nanotubes (TiNTs) samples which are characterized by different crystal structures. The results are compared with a prior study on anatase(0 0 1) thin films grown on SrTiO3(0 0 1). A distinct kinetic structure-activity relationship was present, i.e., the binding energies of the alkanes depend on the polymorph (anatase vs. mixed anatase/rutile) of TiO2. A direct-fitting procedure of the TDS data has been applied to extract the kinetics parameters. The binding energies in the limit of zero coverage decrease as anatase thin film > amorphous-TiNTs ∼ polycrystalline anatase TiNTs > polycrystalline mixed anatase/rutile TiNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号