首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Two new main group metal sulphides, [C10N4H26]0.5[InS2] (1) and [C10N4H26]0.5[GaS2] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P21/n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) Å and β=94.410(4)° (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) Å and β=94.313(4)° (wR=0.021) for compound (2). The structure of [C10N4H26]0.5[MS2] (M=In,Ga) consists of one-dimensional [MS2] chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides.  相似文献   

2.
利用类石墨氮化碳(g-C_3N_4)和亚稳相钙钛氧化物(CaTi_2O_5)固相法制备C_3N_4/CaTi_2O_5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C_3N_4与CaTi_2O_5物质的量之比(nC_3N_4/nCaTi_2O_5)对C_3N_4/CaTi_2O_5复合样品的物相结构和微观形貌的影响,同时考察C_3N_4/CaTi_2O_5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C_3N_4和CaTi_2O_5样品,C_3N_4/CaTi_2O_5复合样品在可见光下具有较高的光催化性能,随着nC_3N_4/nCaTi_2O_5增加,样品的光催化降解率随之增加而后降低,当nC_3N_4/nCaTi_2O_5=1∶1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

3.
利用类石墨氮化碳(g-C3N4)和亚稳相钙钛氧化物(CaTi2O5)固相法制备C3N4/CaTi2O5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C3N4与CaTi2O5物质的量之比(nC3N4/nCaTi2O5)对C3N4/CaTi2O5复合样品的物相结构和微观形貌的影响,同时考察C3N4/CaTi2O5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C3N4和CaTi2O5样品,C3N4/CaTi2O5复合样品在可见光下具有较高的光催化性能,随着nC3N4/nCaTi2O5增加,样品的光催化降解率随之增加而后降低,当nC3N4/nCaTi2O5=1:1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

4.
Mn2+-doped M2Si5N8 (M=Ca, Sr, Ba) phosphors have been prepared by a solid-state reaction method at high temperature and their photoluminescence properties were investigated. The Mn2+-activated M2Si5N8 phosphors exhibit narrow emission bands in the wavelength range of 500-700 nm with peak center at about 599, 606 and 567 nm for M=Ca, Sr, Ba, respectively, due to the 4T1(4G)→6A1(6S) transition of Mn2+. The long-wavelength emission of Mn2+ ion in the host of M2Si5N8 is attributed to the effect of a strong crystal-field of Mn2+ in the nitrogen coordination environment. Also it is observed that there exists energy transfer between M2Si5N8 host lattice and activator (Mn2+). The potential applications of these phosphors have been pointed out.  相似文献   

5.
The IR and Raman spectra of solid and dissolved S4N4, S4N4H4, S4N4D4 and S3N3Cl3 have been recorded and are assigned according to D2d, C4v and C3v symmetry respectively. In the solid state, many forbidden bands and splittings of degenerate vibrations are observed because of the symmetry lowering in the crystals. Due to the different size and shape of the rings and to strong coupling of the normal modes there is no clear correlation between the SN ring stretching vibrations and the strength of the SN bonds, except for the one of the E modes. However, the stretching force constant show the trend expected from changes in interatomic distances.  相似文献   

6.
Incoherent quasi-eleastic neutron scattering experiments: using different resolutions and a wide Q range, have been performed on polycrystalline samples of Cr(CO)36C6H6) and Mn(CO)35C5H5) in the 280–320 K temperature range. It is shown that aromatic rings are involved into a reorientational process characterized by an activation energy of ≈ 16 kJ mol?1 and by correlation times of the order of 2 × 10?11 s and 5 × 10?11 s at 300 K for C6H6 and C5H5 rings respectively. Experimental elastic incoherent structure factors are in agreement with the 2π/6 and 2π/5 jump models and the fitted spectra confirm these models. From a comparison with heat-capacity results we conclude that M(CO)3 groups are fixed during the reorientational process. Finally a comparison with literature data is presented.  相似文献   

7.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

8.
Two organically templated zincophosphites, (C6H14N2)·[Zn3(HPO3)4] and (C4H14N2)·[Zn3(HPO3)4] have been prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction. (C6H14N2)·[Zn3(HPO3)4] crystallizes in the triclinic space group , with cell parameters, a=9.363(4) Å, b=10.051(4) Å, c=10.051(4) Å, α=85.777(13)°, β=82.091(9)°, and γ=79.783(9)°. (C4H14N2)·[Zn3(HPO3)4] crystallizes in the monoclinic space group P21/c, with cell parameters, a=9.9512(3) Å, b=10.1508(3) Å, c=17.8105(5) Å, and β=95.6510(10)°. Although the two structures are different, they have the same anionic framework compositions of [Zn3(HPO3)4]2−. Their frameworks are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo pyramids by sharing vertexes. There exist channels with an eight-membered ring window along the a- and c-axis. Powder X-ray diffraction, IR spectroscopy, 31P MAS solid-state NMR, thermogravimetric and differential thermal analyses were also carried out.  相似文献   

9.
In attempts to synthesize lanthanide(III) nitride iodides with the formula M2NI3 (M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides NaM4N2I7 (orthorhombic, Pna21; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are chains of trans-edge linked [NM4]9+ tetrahedra, which run parallel to the polar 21-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI6]5- octahedra are embedded. The IR spectrum of NaLa4N2I7 recorded from 100 to 1000 cm-1 shows main bands at υ=337, 373 and 489 cm-1. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [NM4]9+ tetrahedra, are shifted toward higher frequencies for the NaM4N2I7 series (M=La-Nd), following the lanthanide contraction.  相似文献   

10.
High-resolution electron beam excited M4,5N4,5N4,5 Auger electron spectra of Cs and I have been measured from CsI vapour. The Auger energies of both Cs and I observed from gaseous CsI are higher than the corresponding free-atom energies due to extra-atomic relaxation. The molecular Auger results have been compared with corresponding photoelectron measurements and free-atom data. Estimates for extra-atomic relaxation energies have been extracted from the changes of the Auger parameter between molecular and atomic species and from the difference between experimental energies and energies calculated with a relativistic Dirac-Fock program, applying the point-charge model for the CsI molecule.  相似文献   

11.
Layered organic-inorganic composite materials (C5H10N3)PbX4 (X=Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the ‘PbX4-layer’ contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X=Cl and 419 nm for X=Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photoluminescence.  相似文献   

12.
The metal-metal bonds of the title compounds have been investigated with the help of energy decomposition analysis at the DFT/TZ2P level. In good agreement with experiment, computations yield Hg-Hg bond distance in [H3SiHg-HgSiH3] of 2.706 Å and Zn-Zn bond distance in [(η5-C5Me5)Zn-Zn(η5-C5Me5)] of 2.281 Å. The Cd-Cd bond distances are longer than the Hg-Hg bond distances. Bond dissociation energies (-BDE) for Zn-Zn bonds in zincocene −70.6 kcal/mol in [(η5-C5H5)2Zn2] and −70.3 kcal/mol in [(η5-C5Me5)2Zn2] are greater amongst the compounds under study. In addition, [(η5-C5H5)2M2] is found to have a binding energy slightly larger than those in [(η5-C5Me5)2M2]. The trend of the M-M bond dissociation energy for the substituents R shows for metals the order GeH3 < SiH3 < CH3 < C5Me5 < C5H5. Electrostatic forces between the metals are always attractive and they are strong (−75.8 to −110.5 kcal/mol). The results demonstrate clearly that the atomic partial charges cannot be taken as a measure of the electrostatic interactions between the atoms. The orbital interaction (covalent bonding) ΔEorb is always smaller than the electrostatic attraction ΔEelstat. The M-M bonding in [RM-M-R] (R = CH3, SiH3, GeH3, C5H5, C5Me5; M = Zn, Cd, Hg) has more than half ionic character (56-64%). The values of Pauli repulsions, ΔEPauli, electrostatic interactions, ΔEelstat, and orbital interactions, ΔEelstat are larger for mercury compounds as compared to zinc and cadmium.  相似文献   

13.
A new hybrid organic-inorganic three-dimensional compound, [Co4(OH)2(H2O)2](C4H11N2)2[C6H2(CO2)4]2·3H2O 1, has been synthesized via hydrothermal reactions and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and magnetic techniques. Compound 1 crystallizes in the monoclinic space group P21/n (no. 14) with a=6.3029(9) Å, b=16.413(2) Å, c=17.139(2) Å, β=98.630(2)°, V=1735.0(4) Å3, Z=2. Compound 1 contains tetranuclear Co4(μ3-OH)2(H2O)2 clusters that are inter-linked by pyromellitate bridging ligands into a three-dimensional structure containing one-dimensional tunnels along the a-axis with water and pendant monoprotonated piperazine molecules in the center. The variable temperature magnetic susceptibility was measured from 2 to 300 K at 5000 Oe showing a predominantly anti-ferromagnetic interaction in 1, and the field dependence of magnetization was measured at 2, 5, 15, and 20 K indicating the competition of magnetic interactions in the tetranuclear centers.  相似文献   

14.
New molecular complexes of fullerenes C60 and C70 with leuco crystal violet (LCV, 1-3); leucomalachite green (LMG, 4-6); crystal violet lactone (CVL, 7); N,N,N′,N′-tetrabenzyl-p-phenylenediamine (TBPDA, 8, and 9); N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPDA, 10, and 11); triphenylamine (TPA, 12, and 13); and substituted phenotellurazines (EPTA and TMPTA, 14, and 15) have been synthesized. Crystal structures have been solved for C60 complexes with LMG (5, 6) TBPDA (8), TMPDA (10), and TPA (12). The C60 molecules form closely packed double layers in 5 and 6, hexagonal layers in 10 and quasi-three-dimensional layers in 8 and 12. The substitution of disordered solvent molecules in the complexes with LMG (4, 5) by naphthalene ones results in the ordering of the C60 molecules. According to IR-, UV-visible-NIR and ESR-spectroscopy the complexes have a neutral ground state. The spectra of 1-8, and 10 show intense charge transfer bands in the visible and NIR-range. On photoexcitation by white light (light-induced ESR (LESR) spectroscopy), 1 and 10 were shown to have an excited ionic state. The LESR signals were generated at light energies <2.25 eV indicating that the excited states in the complexes are realized mainly by direct charge transfer from donor to the C60 molecule.  相似文献   

15.
First principles calculations are performed to investigate the structural, mechanical, and electronic properties of C2N2(NH). Our calculated lattice parameters are in good agreement with the experimental data and previous theoretical values. Orthorhombic C2N2(NH) phase is found to be mechanically stable at an ambient pressure. Based on the calculated bulk modulus and shear modulus of polycrystalline aggregate, C2N2(NH) can be regarded as a potential candidate of ultra-incompressible and hard material. Furthermore, the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli. Density of states and electronic localization function analysis show that the strong C-N covalent bond in CN4 tetrahedron is the main driving force for the high bulk and shear moduli as well as small Poisson's ratio of C2N2(NH).  相似文献   

16.
Two new niobium phosphates were synthesized and their crystal structures determined from single-crystal X-ray data. [NbOF(PO4)](N2C5H7) (1) (monoclinic, space group P21/c, a=11.442(1), b=9.1983(7), c=9.1696(8) Å, β=109.94(1)°) has a layered structure and is the first example of a negatively charged NbOF(PO4) layer analogous to the MO(H2O)PO4 (M=V, Nb) layers. The layer charge is compensated by interlayer 4-aminopyridnium cations that adopt an unusual arrangement as a consequence of H-bonding and π-π interactions. The interlayer aminopyridnium cations can be exchanged with alkylammonium ions which form bilayers inclined at ∼65° to the NbOF(PO4) layer. [(Nb0.9V1.1)O2(PO4)2(H2PO4)] (N2C2H10) (2) (orthorhombic, space group Pbca, a=15.821(2),b=9.0295(9),c=18.301(2) Å) has a disordered three-dimensional structure based on NbO(PO4) layers cross-linked by phosphate tetrahedra, and has a similar structure to the known vanadium analog [V2O2(PO4)2(H2PO4)] (N2C2H10).  相似文献   

17.
We have prepared polycrystalline samples of Zn(C3H3N2)2 by a liquid-mix technique. Characterization of the obtained samples has been performed with the aid of elemental, thermogravimetric, infrared spectra and X-ray powder diffraction analysis. We have measured electric permittivity (ε′, ε″), ac-conductivity (σac), magnetic susceptibility (χ) and specific heat (Cp). The obtained data indicate that this material is a new diamagnetic insulator. A maximum around is found in CpT−3, and it is suggested that in addition to the Debye lattice contribution, there exists a low-frequency mode assigned as an Einstein mode contribution to the total specific heat. As a main result of the study, we found ε′ to be constant in a wide temperature range and to have a small value of 2.3 at room temperature. This feature in combination with other properties like crystallization, good thermal stability (up to 400°C), weak moisture sensitivity and simple synthesis makes Zn(C3H3N2)2 to be a promising candidate for good insulating material in various applications.  相似文献   

18.
A nonmetal pentaborate [C6H13N2][B5O6(OH)4] (1) has been synthesized by 1,4-diazabicyclo[2.2.2] octane (DABCO) and boric acid, and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system with space group Cc (no. 9), a=10.205(2) Å, b=14.143(3) Å, c=11.003(2) Å, β=113.97(3)°, V=1451.1(5) Å3, Z=4. The anionic units, [B5O6(OH)4], are interlinked via hydrogen bonding to form a three-dimensional (3D) supramolecular network containing large channels, in which the protonated [C6H13N2]+ cations are located. Second-harmonic generation (SHG) measurements on the powder samples reveal that 1 exhibits SHG efficiency approximately 0.9 times that of potassium dihydrogen phosphate (KDP).  相似文献   

19.
The structures of Li2MO3 (M=Ir, Pt) can be derived from the well-known Li-ion battery cathode material, LiCoO2, through ordering of Li+ and M4+ ions in the layers that are exclusively occupied by cobalt in LiCoO2. The additional cation ordering lowers the symmetry from rhombohedral (R-3m) to monoclinic (C2/m). Unlike Li2RuO3 no evidence is found for a further distortion of the structure driven by formation of metal-metal bonds. Thermal analysis studies coupled with both ex-situ and in-situ X-ray diffraction measurements show that these compounds are stable up to temperatures approaching 1375 K in O2, N2, and air, but decompose at much lower temperatures in forming gas (5% H2:95% N2) due to reduction of the transition metal to its elemental form. Li2IrO3 undergoes a slightly more complicated decomposition in reducing atmospheres, which appears to involve loss of oxygen prior to collapse of the layered Li2IrO3 structure. Electrical measurements, UV-visible reflectance spectroscopy and electronic band structure calculations show that Li2IrO3 is metallic, while Li2PtO3 is a semiconductor, with a band gap of 2.3 eV.  相似文献   

20.
The crystal and molecular structure of the complex (C5H5)2W(CO)2 has been determined by X-ray analysis R1 = 0.063). The structure contains a trihapto-cyclopentadienyl ligand, bent along its 1,3-axis by 20°. By this unusual structure, a 20-electron valence configuration of the central metal is avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号