首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let $\mathcal S$ be a Desarguesian (n – 1)-spread of a hyperplane Σ of PG(rn, q). Let Ω and ${\bar B}$ be, respectively, an (n – 2)-dimensional subspace of an element of $\mathcal S $ and a minimal blocking set of an ((r – 1)n + 1)-dimensional subspace of PG(rn, q) skew to Ω. Denote by K the cone with vertex Ω and base ${\bar B}$ , and consider the point set B defined by $$B=\left(K\setminus\Sigma\right)\cup \{X\in \mathcal S\, : \, X\cap K\neq \emptyset\}$$ in the Barlotti–Cofman representation of PG(r, q n ) in PG(rn, q) associated to the (n – 1)-spread $\mathcal S$ . Generalizing the constructions of Mazzocca and Polverino (J Algebraic Combin, 24(1):61–81, 2006), under suitable assumptions on ${\bar B}$ , we prove that B is a minimal blocking set in PG(r, q n ). In this way, we achieve new classes of minimal blocking sets and we find new sizes of minimal blocking sets in finite projective spaces of non-prime order. In particular, for q a power of 3, we exhibit examples of r-dimensional minimal blocking sets of size q n+2 + 1 in PG(r, q n ), 3 ≤ r ≤ 6 and n ≥ 3, and of size q 4 + 1 in PG(r, q 2), 4 ≤ r ≤ 6; actually, in the second case, these blocking sets turn out to be the union of q 3 Baer sublines through a point. Moreover, for q an even power of 3, we construct examples of minimal blocking sets of PG(4, q) of size at least q 2 + 2. From these constructions, we also get maximal partial ovoids of the hermitian variety H(4, q 2) of size q 4 + 1, for any q a power of 3.  相似文献   

2.
In this paper we construct maximal partial spreads in PG(3, q) which are a log q factor larger than the best known lower bound. For n ≥ 5 we also construct maximal partial spreads in PG(n, q) of each size between cnq n ? 2 log q and cq n ? 1.  相似文献   

3.
Given a finite group G, how many squares are possible in a set of mutually orthogonal Latin squares based on G? This is a question that has been answered for a few classes of groups only, and for no nonsoluble group. For a nonsoluble group G, we know that there exists a pair of orthogonal Latin squares based on G. We can improve on this lower bound when G is one of GL(2, q) or SL(2, q), q a power of 2, q ≠ 2, or is obtained from these groups using quotient group constructions. For nonsoluble groups, that is the extent of our knowledge. We will extend these results by deriving new lower bounds for the number of squares in a set of mutually orthogonal Latin squares based on the group GL(n, q), q a power of 2, q ≠ 2.  相似文献   

4.
We find a relationship between semifield spreads of PG(3,q), small Rédei minimal blocking sets of PG(2,q2), disjoint from a Baer subline of a Rédei line, and translation ovoids of the hermitian surface H(3,q2).  相似文献   

5.
A (d,n,r,t)-hypercube is an n×n×?×n (d-times) array on nr symbols such that when fixing t coordinates of the hypercube (and running across the remaining dt coordinates) each symbol is repeated ndrt times. We introduce a new parameter, r, representing the class of the hypercube. When r=1, this provides the usual definition of a hypercube and when d=2 and r=t=1 these hypercubes are Latin squares. If d?2r, then the notion of orthogonality is also inherited from the usual definition of hypercubes. This work deals with constructions of class r hypercubes and presents bounds on the number of mutually orthogonal class r hypercubes. We also give constructions of sets of mutually orthogonal hypercubes when n is a prime power.  相似文献   

6.
We first note that each element of a symplectic spread of PG(2n − 1, 2 r ) either intersects a suitable nonsingular quadric in a subspace of dimension n − 2 or is contained in it, then we prove that this property characterises symplectic spreads of PG(2n − 1, 2 r ). As an application, we show that a translation plane of order q n , q even, with kernel containing GF(q), is defined by a symplectic spread if and only if it contains a maximal arc of the type constructed by Thas (Europ J Combin 1:189–192, 1980).  相似文献   

7.
Aspread inPG(n, q) is a set of lines which partitions the point set. A packing inPG(n, q) (n odd) is a partition of the lines into spreads. Two packings ofPG(n, q) are calledorthogonal if and only if any two spreads, one from each packing, have at most one line in common. Recently, R. D. Baker has shown the existence of a pair of orthogonal packings inPG(5, 2). In this paper we enumerate all packings inPG(5, 2) having both an automorphism of order 31 and the Frobenius automorphism. We find all pairs of orthogonal packings of the above type and display a set of six mutually orthogonal packings. Previously the largest set of orthogonal packings known inPG(5, 2) was two.  相似文献   

8.
In this article we study minimal1-blocking sets in finite projective spaces PG(n,q),n 3. We prove that in PG(n,q 2),q = p h , p prime, p > 3,h 1, the second smallest minimal 1-blockingsets are the second smallest minimal blocking sets, w.r.t.lines, in a plane of PG(n,q 2). We also study minimal1-blocking sets in PG(n,q 3), n 3, q = p h, p prime, p > 3,q 5, and prove that the minimal 1-blockingsets of cardinality at most q 3 + q 2 + q + 1 are eithera minimal blocking set in a plane or a subgeometry PG(3,q).  相似文献   

9.
A pair of Latin squares, A and B, of order n, is said to be pseudo-orthogonal if each symbol in A is paired with every symbol in B precisely once, except for one symbol with which it is paired twice and one symbol with which it is not paired at all. A set of t Latin squares, of order n, are said to be mutually pseudo-orthogonal if they are pairwise pseudo-orthogonal. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146.  相似文献   

10.
We prove that a GF(q)-linear Rédei blocking set of size q t + q t–1 + ··· + q + 1 of PG(2,q t) defines a derivable partial spread of PG(2t – 1, q). Using such a relationship, we are able to prove that there are at least two inequivalent Rédei minimal blocking sets of size q t + q t–1 + ··· + q + 1 in PG(2,q t), if t 4.  相似文献   

11.
The construction of a Hadamard matrix of order n2 from a projective plane of order n, n even, is given. Alternative constructions, specialized to the case n = 10, from sets of mutually orthogonal Latin squares are also given. Special properties of the Hadamard matrices are discussed and a partial example is given in the case n = 10.  相似文献   

12.
Let q be a prime power and let n ≥ 0, t ≥ 1 be integers. We determine the sizes of the point orbits of each of the groups GL(n + 1, q), PGL(n + 1, q), SL(n + 1, q) and PSL(n + 1, q) acting on PG(n, q t) and for each of these sizes (and groups) we determine the exact number of point orbits of this size.  相似文献   

13.
Let D(v) denote the maximum number of pairwise disjoint Steiner triple systems of order v. In this paper, we prove that if n is an odd number, there exist 12 mutually orthogonal Latin squares of order n and D(1 + 2n) = 2n ? 1, then D(1 + 12n) = 12n ? 1.  相似文献   

14.
A lower and an upper bound for D(n), the maximum number of mutually orthogonal and doubly diagonalized Latin squares of order n, are given.  相似文献   

15.
We provide a characterization of the classical point-line designs PG1(n,q), where n?3, among all non-symmetric 2-(v,k,1)-designs as those with the maximal number of hyperplanes. As an application of this result, we characterize the classical quasi-symmetric designs PGn−2(n,q), where n?4, among all (not necessarily quasi-symmetric) designs with the same parameters as those having line size q+1 and all intersection numbers at least qn−4+?+q+1. Finally, we also give an explicit lower bound for the number of non-isomorphic designs having the same parameters as PG1(n,q); in particular, we obtain a new proof for the known fact that this number grows exponentially for any fixed value of q.  相似文献   

16.
A method of sum composition for construction of orthogona Latin squares was introduced by A. Hedayat and E. Seiden [1]. In this paper we exhibit procedures for constructing a pair of orthogonal Latin squares of size pα + 4 for primes of the form 4m + 1 or p ≡ 1, 2, 4 mod 7. We also show that for any p > 2n and n even one can construct and orthogonal pair of Latin squares of size pα + n using the method of sum composition. We observe that the restriction xy = 1 used by Hedayat and Seiden is sometimes necessary.  相似文献   

17.
An (n, d) set in the projective geometry PG(r, q) is a set of n points, no d of which are dependent. The packing problem is that of finding n(r, q, d), the largest size of an (n, d) set in PG(r, q). The packing problem for PG(r, 3) is considered. All of the values of n(r, 3, d) for r ? 5 are known. New results for r = 6 are n(6, 3, 5) = 14 and 20 ? n(6, 3, 4) ? 31. In general, upper bounds on n(r, q, d) are determined using a slightly improved sphere-packing bound, the linear programming approach of coding theory, and an orthogonal (n, d) set with the known extremal values of n(r, q, d)—values when r and d are close to each other. The BCH constructions and computer searches are used to give lower bounds. The current situation for the packing problem for PG(r, 3) with r ? 15 is summarized in a final table.  相似文献   

18.
The maximum number of mutually orthogonal Sudoku Latin squares (MOSLS) of order \(n=m^2\) is \(n-m\). In this paper, we construct for \(n=q^2\), q a prime power, a set of \(q^2-q-1\) MOSLS of order \(q^2\) that cannot be extended to a set of \(q^2-q\) MOSLS. This contrasts to the theory of ordinary Latin squares of order n, where each set of \(n-2\) mutually orthogonal Latin Squares (MOLS) can be extended to a set of \(n-1\) MOLS (which is best possible). For this proof, we construct a particular maximal partial spread of size \(q^2-q+1\) in \(\mathrm {PG}(3,q)\) and use a connection between Sudoku Latin squares and projective geometry, established by Bailey, Cameron and Connelly.  相似文献   

19.
Let L1, L2,…, Lt be a given set of t mutually orthogonal order-n latin squares defined on a symbol set S, |S| = n. The squares are equivalent to a (t + 2)-netN of order n which has n2 points corresponding to the n2 cells of the squares. A line of the net N defined by the latin square Li comprises the n points of the net which are specified by a set of n cells of Li all of which contain the same symbol x of S. If we pick out a particular r × r block B of cells, a line which contains points corresponding to r of the cells of B will be called an r-cell line. If there exist r(r ? 1) such lines among the tn lines of N, we shall say that they form a pseudo-subplane of order r-the “pseudo” means that these lines need not belong to only r ? 1 of the latin squares. The purpose of the present note is to prove that the hypothesis that such a pseudo-plane exists in N implies that r3 ? (t + 2)r2 + r + nt ?10.  相似文献   

20.
Some new examples of two-character sets with respect to planes of PG(3, q 2), q odd, are constructed. They arise from three-dimensional hyperbolic quadrics, from the geometry of an orthogonal polarity commuting with a unitary polarity. The last examples arise from the geometry of the unitary group PSU(3, 3) acting on the split Cayley hexagon H(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号