首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Let R be a ring. A right R-module M is called “essentially compressible” if it embeds in each of its essential submodules. Also a module X R is called “completely essentially compressible” if every submodule of X R is an essentially compressible R-module. In this aricle, it is shown that a right R-module M embeds in a direct sum of compressible right R-modules if and only if M R is essentially compressible and every nonzero essentially compressible submodule of M R contains a compressible submodule. Every essentially compressible R-module is shown to be retractable. Moreover, if either R R has Krull dimension, or R is Morita equivalent to a right duo ring, then a right R-module embeds in a direct sum of compressible right R-modules if and only if it is completely essentially compressible.  相似文献   

2.
In this paper, we prove the global existence of small classical solutions to the 3D generalized compressible Oldroyd-B system. It can be seen as compressible Euler equations coupling the evolution of stress tensor τ. The result mainly shows that singularity of solutions to compressible Euler equations can be prevented by the coupling of viscoelastic stress tensor. Moreover, unlike most complex fluids containing compressible Euler equations, the irrotational condition ∇×u=0 would not be proposed here to achieve the global well-posedness.  相似文献   

3.
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples   总被引:37,自引:0,他引:37  
Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimization-based approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(Nlog2N), where N is the length of the signal.  相似文献   

4.
This paper studies the approximation of the non‐Newtonian fluid equations by the artificial compressibility method. We first introduce a family of perturbed compressible non‐Newtonian fluid equations (depending on a positive parameter ε) that approximates the incompressible equations as ε → 0+. Then, we prove the unique existence and convergence of solutions for the compressible equations to the solutions of the incompressible equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Numerical simulations have been done for a compressible mixing layer, in which the inflow speed on the low speed side was made to have periodic undulations, so as to see if this method could enhance the mixing effect of the layer. Systematic computations for a 2-D compressible mixing layer with Mach numberM e = 0.6 have been done, and the results showed that the proposed method was indeed effective in enhancing the mixing.  相似文献   

6.

In this paper, the analytical blowup solutions of the N-dimensional radial symmetric compressible Euler equations are constructed. Some previous results of the blowup solutions for the compressible Euler equations with constant damping are generalized to the time-depending damping case. The generalization is untrivial because that the damp coefficient is a nonlinear function of time t.

  相似文献   

7.
An important problem in the theory of compressible gas flows is to understand the singular behavior of vacuum states. The main difficulty lies in the fact that the system becomes degenerate at the vacuum boundary, where the characteristic speeds u ± c coincide and have unbounded spatial derivative since c behaves like x1/2 close to the boundary. In this paper, we overcome this difficulty by presenting a new formulation and new energy spaces. We establish the local‐in‐time well‐posedness of one‐dimensional compressible Euler equations for isentropic flows with the physical vacuum singularity in some spaces adapted to the singularity. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
This article applies the first‐order system least‐squares (fosls) finite element method developed by Cai, Manteuffel and McCormick to the compressible Stokes equations. By introducing a new dependent velocity flux variable, we recast the compressible Stokes equations as a first‐order system. Then it is shown that the ellipticity and continuity hold for the least‐squares functionals employing the mixture of H?1 and L2, so that the fosls finite element methods yield best approximations for the velocity flux and velocity. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:689–699, 2001  相似文献   

9.
In this study, we discuss some limit analysis of a viscous capillary model of plasma, which is expressed as a so‐called the compressible Navier‐Stokes‐Poisson‐Korteweg equation. First, the existence of global smooth solutions for the initial value problem to the compressible Navier‐Stokes‐Poisson‐Korteweg equation with a given Debye length λ and a given capillary coefficient κ is obtained. We also show the uniform estimates of global smooth solutions with respect to the Debye length λ and the capillary coefficient κ. Then, from Aubin lemma, we show that the unique smooth solution of the 3‐dimensional Navier‐Stokes‐Poisson‐Korteweg equations converges globally in time to the strong solution of the corresponding limit equations, as λ tends to zero, κ tends to zero, and λ and κ simultaneously tend to zero. Moreover, we also give the convergence rates of these limits for any given positive time one by one.  相似文献   

10.
In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc.  相似文献   

11.
We construct the regular expansion at small compressibilities for the theory of fully developed turbulence of an isotropic homogeneous compressible fluid with MSR-type action. The parameter of the expansion is the Mach numberMa. For the inertial range of a compressible fluid, we study the infrared singularities determined by the transverse fields, which are used in the theory of incompressible fluids. These singularities are connected with the composite operators of transverse fields that are investigated by the quantum field renormalization group method. As a result, it is shown that the transverse fields induce scaling behavior with theMa scaling dimension equal to 1/3 (i.e.,Ma k–1/3 is the dimensionless scaling parameter of the correlation functions in the inertial range).Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 106, No. 3, pp. 375–389, March, 1996.Translated by L. O. Chekhov.  相似文献   

12.
We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin’s result [Xin, Z.: Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Comm. Pure Appl. Math., 51, 229–240 (1998)] to the capillary case but we do not need the condition that the entropy is bounded below. Moreover, from the proof of Theorem 1.2, we also obtain the exact relationship between the size of support of the initial density and the life span of the solutions. We also present a sufficient condition on the blow-up of smooth solutions to the compressible fluid models of Korteweg type when the initial density is positive but has a decay at infinity.  相似文献   

13.
This paper is concerned with the large time behavior of solutions of the Cauchy problem to the one‐dimensional compressible fluid models of Korteweg type, which governs the motions of the compressible fluids with internal capillarity. When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave, it is shown that the viscous contact wave corresponding to the contact discontinuity is asymptotically stable provided that the strength of contact discontinuity and the initial perturbation are suitably small. The analysis is based on the elementary L2‐energy method together with continuation argument. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The Navier-Stokes equations of a compressible barotropic fluid in 1D with zero velocity boundary conditions are considered. We study the case of large initial data in H 1 as well as the mass force such that the stationary density is positive. The uniform lower bound for the density is proved. By constructing suitable Lyapunov functionals, decay rate estimates in L 2-norm and H 1-norm are given. The decay rate is exponential if so the decay rate of the nonstationary part of the mass force is. The results are proved in the Eulerian coordinates for a wide class of increasing state functions including with any γ > 0 as well as functions of arbitrarily fast growth. We also extend the results for equations of a multicomponent compressible barotropic mixture (in the absence of chemical reactions). Received December 20, 2000; accepted February 27, 2001.  相似文献   

15.
We study the compressible Navier-Stokes equations of viscous heat-conductive fluids in a periodic domain \mathbbT3\mathbb{T}^{3} with zero heat conductivity k=0. We prove a blow-up criterion for the local strong solutions in terms of the temperature and positive density, similar to the Beale-Kato-Majda criterion for ideal incompressible flows.  相似文献   

16.
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.  相似文献   

17.
We investigate the steady compressible Navier–Stokes equations near the equilibrium state v = 0, ρ = ρ0 (v the velocity, ρ the density) corresponding to a large potential force. We introduce a method of decomposition for such equations: the velocity field v is split into a non-homogeneous incompressible part u (div (ρ0u) = (0) and a compressible (irrotational) part ∇ϕ. In such a way, the original complicated mixed elliptic–hyperbolic system is split into several ‘standard’ equations: a Stokes-type system for u, a Poisson-type equation for ϕ and a transport equation for the perturbation of the density σ = ρ − ρ0. For ρ0 = const. (zero potential forces), the method coincides with the decomposition of Novotny and Padula [21]. To underline the advantages of the present approach, we give, as an example, a ‘simple’ proof of the existence of isothermal flows in bounded domains with no-slip boundary conditions. The approach is applicable, with some modifications, to more complicated geometries and to more complicated boundary conditions as we will show in forthcoming papers. © 1998 B.G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

18.
This paper concerns the large time behavior of strong and classical solutions to the two-dimensional Stokes approximation equations for the compressible flows. We consider the unique global strong solution or classical solution to the two-dimensional Stokes approximation equations for the compressible flows with large external potential force, together with a Navier-slip boundary condition, for arbitrarily large initial data. Under the conditions that the corresponding steady state exists uniquely with the steady state density away from vacuum, we prove that the density is bounded from above independently of time, consequently, it converges to the steady state density in Lp and the velocity u converges to the steady state velocity in W1,p for any 1p<∞ as time goes to infinity; furthermore, we show that if the initial density contains vacuum at least at one point, then the derivatives of the density must blow up as time goes to infinity.  相似文献   

19.
This paper is concerned with a one-dimensional nonisentropic compressible planar magnetohydrodynamic flow with general initial data, whose behaviors at far fields x→± are different. The low Mach limit for the system is rigorously justified. The limit relies on the uniform estimates including weighted time derivatives and an extended convergence lemma.  相似文献   

20.
T. Luginsland  L. Kleiser 《PAMM》2011,11(1):577-578
We developed a numerical setup to simulate swirling jet flow undergoing vortex breakdown. Our simulation code CONCYL solves the compressible Navier-Stokes equations in cylindrical coordinates using high-order numerical schemes. A nozzle is included in the computational domain to account for more realistic inflow boundary conditions. Preliminary results of a Re = 5000 compressible swirling jet at Mach number M a = 0.6 with an azimuthal velocity as high as the maximum axial velocity (swirl number S = 1.0 ) capture the fundamental characteristics of this flow type: At a certain point in time the jet spreads and develops into a conical vortex breakdown. A stagnation point-flow in the vicinity of the jet axis is clearly visible with the stagnation point located close to the nozzle exit. The stagnation point precesses in time around the jet axis, moving up- and downstream. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号