首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the limit of a nonlinear diffusion model involving the fractional Laplacian we get a “mean field” equation arising in superconductivity and superfluidity. For this equation, we obtain uniqueness, universal bounds and regularity results. We also show that solutions with finite second moment and radial solutions admit an asymptotic large time limiting profile which is a special self-similar solution: the “elementary vortex patch”.  相似文献   

2.
In this paper, we are concerned with the existence and non-existence of global solutions of a semi-linear heat equation with fractional Laplacian. We obtain some extension of results of Weissler who considered the case α = 1, and h ≡ 1.  相似文献   

3.
This article studies the global well-posedness and long-time dynamics for the nonlinear complex Ginzburg–Landau equation involving fractional Laplacian. The global existence and some uniqueness criterion of weak solutions are given with compactness method. To study the strong solutions with the semigroup method, we generalize some pointwise estimates for the fractional Laplacian to the complex background and study carefully the linear evolution of the equation. Finally, the existence of global attractors is studied.  相似文献   

4.
We study global and local stabilities of the stationary zero solution to certain infinite-dimensional stochastic differential equations. The stabilities are in terms of fractional powers of the linear part of the drift. The abstract results are applied to semilinear stochastic partial differential equations with non-Lipschitzian drift terms and, in particular, to some specific models of population dynamics. We also expose the stabilizing effect of noise on the otherwise unstable zero solution

As a basic tool we use the Forward Inequality, a generalization of Kolmogorov's forward equation; it is an application of Lyapunov's second method with a sequence of Lyapunov functionals  相似文献   

5.
We study the long time behavior of the solution to some McKean–Vlasov stochastic differential equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic of the membrane potential of a spiking neuron in a large network. We prove that for a small enough interaction parameter, any solution converges to the unique (in this case) invariant probability measure. To this aim, we first obtain global bounds on the jump rate and derive a Volterra type integral equation satisfied by this rate. We then replace temporary the interaction part of the equation by a deterministic external quantity (we call it the external current). For constant current, we obtain the convergence to the invariant probability measure. Using a perturbation method, we extend this result to more general external currents. Finally, we prove the result for the non-linear McKean–Vlasov equation.  相似文献   

6.
We study in this Note the Fisher–KPP equation where the Laplacian is replaced by the generator of a Feller semigroup with slowly decaying kernel, an important example being the fractional Laplacian. Contrary to what happens in the standard Laplacian case, where the stable state invades the unstable one at constant speed, we prove here that invasion holds at an exponential in time velocity. These results provide a mathematically rigorous justification of numerous heuristics about this model. To cite this article: X. Cabré, J.-M. Roquejoffre, C. R. Acad. Sci. Paris, Ser. I 347 (2009).  相似文献   

7.
We study the long time behavior of solutions of the non-autonomous reaction-diffusion equation defined on the entire space Rn when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is established in L2(Rn) and H1(Rn), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of solutions outside bounded domains.  相似文献   

8.
In this paper we study the asymptotic behavior of solutions of a dissipative coupled system where we have interactions between a Kirchhoff plate and an Euler–Bernoulli plate. The dissipative mechanism is given by memory terms that act either collaboratively (in both equations) or unilaterally (in only one equation). We show that the solutions of this system decay to zero sometimes exponentially and other times polynomially. We found explicit decay rates that depend on the fractional exponents of the memory in each of the following cases: when the memory only acts in the Kirchhoff equation, or only in the Euler–Bernoulli equation, or in both. We also show that all decay rates found are the best. The results obtained are surprising for the following facts: in the collaborative case, the best decay rates of the system are given by the worst decay rates of the uncoupled equations, and in the unilateral case, we conclude that the memory effects in the Euler–Bernoulli equation dissipate the system more slowly than memory effects in the Kirchhoff equation.  相似文献   

9.
We construct two finite difference models for the Airy differential equation. In one model, the form of the complete asymptotic representation of the solution can be found. However, this is not the case for the second model which is based on the use of a nonstandard difference scheme. This scheme leads to a second-order, linear difference equation that is not of a form for which the theorems of Poincaré and Perron can be directly applied to obtain the asymptotic behavior of the solutions.  相似文献   

10.
In this work, we give a perturbation theorem for strong polynomial solutions to the zero surface tension Hele-Shaw equation driven by injection or suction, the so called Polubarinova–Galin equation. This theorem enables us to explore properties of solutions with initial functions close to polynomials. Applications of this theorem are given in the suction and injection cases. In the former case, we show that if the initial domain is close to a disk, most of the fluid will be sucked before the strong solution blows up. In the latter case, we obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows in terms of invariant Richardson complex moments. This rescaling behavior result generalizes a recent result regarding large-time rescaling behavior for small data in terms of moments. As a byproduct of a theorem in this paper, a short proof of existence and uniqueness of strong solutions to the Polubarinova–Galin equation is given.  相似文献   

11.
We study a linear fractional Fokker–Planck equation that models non-local diffusion in the presence of a potential field. The non-locality is due to the appearance of the ‘fractional Laplacian’ in the corresponding PDE, in place of the classical Laplacian which distinguishes the case of regular diffusion. We prove existence of weak solutions by combining a splitting technique together with a Wasserstein gradient flow formulation. An explicit iterative construction is given, which we prove weakly converges to a weak solution of this PDE.  相似文献   

12.
This paper is concerned with stochastic fractional nonlinear Schrödinger equation, which plays a very important role in fractional nonrelativistic quantum mechanics. Due to disturbing and interacting of the fractional Laplacian operator on a bounded interval with white noise, the stochastic fractional nonlinear Schrödinger equation is too complicated to be understood. This paper would explore and analyze this stochastic fractional system. Using a suitable weighted space with some fractional operator skills, it overcame the difficulties coming from the fractional Laplacian operator on a bounded interval. Applying the tightness instead of the common compactness, and combining Prokhorov theorem with Skorokhod embedding theorem, it solved the convergence problem in the case of white noise. It finally established the existence of martingale solutions for the stochastic fractional nonlinear Schrödinger equation on a bounded interval.  相似文献   

13.
In this paper we solve an initial‐boundary value problem that involves a pde with a nonlocal term. The problem comes from a cell division model where the growth is assumed to be stochastic. The deterministic version of this problem yields a first‐order pde; the stochastic version yields a second‐order parabolic pde. There are no general methods for solving such problems even for the simplest cases owing to the nonlocal term. Although a solution method was devised for the simplest version of the first‐order case, the analysis does not readily extend to the second‐order case. We develop a method for solving the second‐order case and obtain the exact solution in a form that allows us to study the long time asymptotic behaviour of solutions and the impact of the dispersion term. We establish the existence of a large time attracting solution towards which solutions converge exponentially in time. The dispersion term does not appear in the exponential rate of convergence.  相似文献   

14.
Nonlocal Lotka–Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses co-exist?

We will explain how these questions relate to the so-called “constrained Hamilton–Jacobi equation” and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional.

Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation.

Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution.  相似文献   

15.
The purpose of this article is to perform an asymptotic analysis for an interaction problem between a viscous fluid and an elastic structure when the flow domain is a three-dimensional cylindrical tube. We consider a periodic, non-steady, axisymmetric, creeping flow of a viscous incompressible fluid through a long and narrow cylindrical elastic tube. The creeping flow is described by the Stokes equations and for the wall displacement we consider the Koiter's equation. The well posedness of the problem is proved by means of its variational formulation. We construct an asymptotic approximation of the problem for two different cases. In the first case, the stress term in Koiter's equation contains a great parameter as a coefficient and dominates with respect to the inertial term while in the second case both the terms are of the same order and contain the great parameter. An asymptotic analysis is developed with respect to two small parameters. Analysing the leading terms obtained in the second case, we note that the wave phenomena takes place. The small error between the exact solution and the asymptotic one justifies the below constructed asymptotic expansions.  相似文献   

16.
In this paper we study the asymptotic phase space energy distribution of solution of the Schrödinger equation with a time-dependent random potential. The random potential is assumed to have slowly decaying correlations. We show that the Wigner transform of a solution of the random Schrödinger equation converges in probability to the solution of a radiative transfer equation. Moreover, we show that this radiative transfer equation with long-range coupling has a regularizing effect on its solutions. Finally, we give an approximation of this equation in term of a fractional Laplacian. The derivations of these results are based on an asymptotic analysis using perturbed-test-functions, martingale techniques, and probabilistic representations.  相似文献   

17.
In this paper, we introduce a space fractional negative binomial process (SFNB) by time-changing the space fractional Poisson process by a gamma subordinator. Its one-dimensional distributions are derived in terms of generalized Wright functions and their governing equations are obtained. It is a Lévy process and the corresponding Lévy measure is given. Extensions to the case of distributed order SFNB, where the fractional index follows a two-point distribution, are investigated in detail. The relationship with space fractional Polya-type processes is also discussed. Moreover, we define and study multivariate versions, which we obtain by time-changing a d-dimensional space-fractional Poisson process by a common independent gamma subordinator. Some applications to population’s growth and epidemiology models are explored. Finally, we discuss algorithms for the simulation of the SFNB process.  相似文献   

18.
We study the global dynamics of a nonlocal population model with age structure in a bounded domain. We mainly concern with the case where the birth rate decreases as the mature population size become large. The analysis is rather subtle and it is inadequate to apply the powerful theory of monotone dynamical systems. By using the method of super-sub solutions, combined with the careful analysis of the kernel function in the nonlocal term, we prove nonexistence, existence and uniqueness of positive steady states of the model.Moreover, due to the mature individuals do not diffuse, the solution semiflow to the model is not compact. To overcome the difficulty of non-compactness in describing the global asymptotic stability of the unique positive steady state, we first establish an appropriate comparison principle. With the help of the comparison principle,we can employ the theory of dissipative systems to obtain the global asymptotic stability of the unique positive steady state. The main results are illustrated with the nonlocal Nicholson's blowflies equation and the nonlocal Mackey-Glass equation.  相似文献   

19.
In this paper, we investigate the well-posedness of the real fractional Ginzburg–Landau equation in several different function spaces, which have been used to deal with the Burgers’ equation, the semilinear heat equation, the Navier–Stokes equations, etc. The long time asymptotic behavior of the nonnegative global solutions is also studied in details.  相似文献   

20.
We derive and analyze a general class of difference equation models for the dynamics of hierarchically organized populations. Different forms of intra-specific competition give rise to different types of nonlinearities. For our models, we prove that contest competition results asymptotically in only equilibrium dynamics. Scramble competition, on the other hand, can result in more complex asymptotic dynamics. We study both the case when the limiting resource is a constant and when it is dynamically modeled. We prove, in all cases, that the population persists if the inherent net reproductive number of the population is greater than one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号