首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider anisotropic self-similar random fields, in particular, the fractional Brownian sheet (fBs). This Gaussian field is an extension of fractional Brownian motion. It is well known that the fractional Brownian motion is a unique Gaussian self-similar process with stationary increments. The main result of this article is an example of a Gaussian self-similar field with stationary rectangular increments that is not an fBs. So we proved that the structure of self-similar Gaussian fields can be substantially more involved then the structure of self-similar Gaussian processes. In order to establish the main result, we prove some properties of covariance function for self-similar fields with rectangular increments. Also, using Lamperti transformation, we obtain properties of covariance function for the corresponding stationary fields.  相似文献   

2.
《随机分析与应用》2013,31(3):775-799
Abstract

We study the class of random fields having their reproducing kernel Hilbert space isomorphic to a fractional Sobolev space of variable order on ? n . Prototypes of this class include multifractional Brownian motion, multifractional free Markov fields, and multifractional Riesz–Bessel motion. The study is carried out using the theory of generalized random fields defined on fractional Sobolev spaces of variable order. Specifically, we consider the class of generalized random fields satisfying a pseudoduality condition of variable order. The factorization of the covariance operator of the pseudodual allows the definition of a white-noise linear filter representation of variable order. In the ordinary case, the Hölder continuity, in the mean-square sense, of the class of random fields introduced is proved, and its mean-square Hölder spectrum is defined in terms of the variable regularity order of the functions in the associated reproducing kernel Hilbert space. The pseudodifferential representation of variable order of the resulting class of multifractal random fields is also defined. Some examples of pseudodifferential models of variable order are then given.  相似文献   

3.
This paper is to prove that, if a one-dimensional random walk can be approximated by a Brownian motion, then the related random walk in a general independent scenery can be approximated by a Brownian motion in Brownian scenery.  相似文献   

4.
This article deals with the Student's t vector random field, which is formulated as a scale mixture of Gaussian vector random fields, and whose finite-dimensional distributions decay in power-law and have heavy tails. There are two classes of Student's t vector random fields, one with second-order moments, and the other without a second-order moment. A Cauchy vector random field is an example of Student's t vector random fields without a first-order moment, and is also an example of Stable vector random fields. A second-order Student's t vector random field allows for any given correlation structure, just as a Gaussian vector random field does. We propose four types of covariance matrix structures for second-order Student's t vector random fields, which decay in power-law or log-law.  相似文献   

5.
We study the persistence probability for processes with stationary increments. Our results apply to a number of examples: sums of stationary correlated random variables whose scaling limit is fractional Brownian motion; random walks in random sceneries; random processes in Brownian scenery; and the Matheron–de Marsily model in Z2 with random orientations of the horizontal layers. Using a new approach, strongly related to the study of the range, we obtain an upper bound of the optimal order in general and improved lower bounds (compared to previous literature) for many specific processes.  相似文献   

6.
We establish a central limit theorem for a branching Brownian motion with random immigration under the annealed law,where the immigration is determined by another branching Brownian motion.The limit is a Gaussian random measure and the normalization is t3/4for d=3 and t1/2for d≥4,where in the critical dimension d=4 both the immigration and the branching Brownian motion itself make contributions to the covariance of the limit.  相似文献   

7.
On an open interval we follow the paths of a Brownian motion which returns to a fixed point as soon as it reaches the boundary and restarts afresh indefinitely. We determine that two paths starting at different points either cannot collapse or they do so almost surely. The problem can be modelled as a spatially inhomogeneous random walk on a group and contrasts sharply with the higher dimensional case in that if two paths may collapse they do so almost surely.  相似文献   

8.
We construct a sequence of transient random walks in random environments and prove that by proper scaling, it converges to a diffusion process with drifted Brownian potential. To this end, we prove a counterpart of convergence for transient random walk in non-random environment, which is interesting itself.  相似文献   

9.
This paper concerns the homogenization problem of a parabolic equation with large, time-dependent, random potentials in high dimensions d≥3d3. Depending on the competition between temporal and spatial mixing of the randomness, the homogenization procedure turns to be different. We characterize the difference by proving the corresponding weak convergence of Brownian motion in random scenery. When the potential depends on the spatial variable macroscopically, we prove a convergence to SPDE.  相似文献   

10.
Operator scaling Gaussian random fields, as anisotropic generalizations of self-similar fields, know an increasing interest for theoretical studies in the literature. However, up to now, they were only defined through stochastic integrals, without explicit covariance functions. In this paper we exhibit explicit covariance functions, as anisotropic generalizations of fractional Brownian fields ones, and define corresponding Operator scaling Gaussian random fields. This allows us to propose a fast and exact method of simulation in dimension 2 based on the circulant embedding matrix method, following ideas of Stein [34] for fractional Brownian surfaces syntheses. This is a first piece of work to popularize these models in anisotropic spatial data modeling.  相似文献   

11.
We establish a quenched central limit theorem (CLT) for the branching Brownian motion with random immigration in dimension $d\geq4$. The limit is a Gaussian random measure, which is the same as the annealed central limit theorem, but the covariance kernel of the limit is different from that in the annealed sense when d=4.  相似文献   

12.
Fractional Brownian surfaces are commonly used as models for landscapes and other physical processes in space. This work shows how to simulate fractional Brownian surfaces on a grid efficiently and exactly by embedding them in a periodic Gaussian random field and using the fast Fourier transform. Periodic embeddings are given that are proven to yield positive definite covariance functions and hence yield exact simulations for all possible densities of the simulation grid. Numerical results show these embeddings can sometimes be made more efficient in practice. Further numerical results show how the ideas developed for simulating fractional Brownian surfaces can be used for simulating other Gaussian random fields. The simulation methodology is used to study the behavior of a simple estimator of the parameters of a fractional Brownian surface.  相似文献   

13.
ABSTRACT

We show how the techniques presented in Pimentel [On the location of the maximum of a continuous stochastic process, J. Appl. Prob. 51 (2014), pp. 152–161] can be extended to a variety of non-continuous processes and random fields. For the Gaussian case, we prove new covariance formulae between the maximum and the maximizer of the process. As examples, we prove uniqueness of the location of the maximum for spectrally positive Lévy processes, Ornstein–Uhlenbeck process, fractional Brownian Motion and the Brownian sheet among other processes.  相似文献   

14.
Random ordinary differential equations (RODEs) are ordinary differential equations which contain a stochastic process in their vector fields. They can be analyzed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable. Traditional numerical schemes for ordinary differential equations thus do not achieve their usual order of convergence when applied to RODEs. Nevertheless, deterministic calculus can still be used to derive higher order numerical schemes for RODEs by means of a new kind of integral Taylor expansion. The theory is developed systematically here, applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes and compared with other numerical schemes for RODEs in the literature.  相似文献   

15.
A fractional normal inverse Gaussian (FNIG) process is a fractional Brownian motion subordinated to an inverse Gaussian process. This paper shows how the FNIG process emerges naturally as the limit of a random walk with correlated jumps separated by i.i.d. waiting times. Similarly, we show that the NIG process, a Brownian motion subordinated to an inverse Gaussian process, is the limit of a random walk with uncorrelated jumps separated by i.i.d. waiting times. The FNIG process is also derived as the limit of a fractional ARIMA processes. Finally, the NIG densities are shown to solve the relativistic diffusion equation from statistical physics.  相似文献   

16.
We consider random walks with small fixed steps inside of edges of a graph , prescribing a natural rule of probabilities of jumps over a vertex. We show that after an appropriate rescaling such random walks weakly converge to the natural Brownian motion on constructed in Ref. 1.  相似文献   

17.
Some function space laws of the iterated logarithm for Brownian motion with values in finite and infinite dimensional vector spaces are shown to follow from Hincin's classical law of the iterated logarithm and some martingale techniques. A law of the iterated logarithm for Brownian motion in a differentible manifold is also stated.  相似文献   

18.
We evaluate upper bounds for the maximal distributions of some Gaussian random fields, which arise in the study of the asymptotic behavior of various two-dimensional empirical processes, with random index. Some of them are generalizations of well-known conditional Brownian fields, while the others are obtained by their integration. We present also some possible statistical applications of our results.  相似文献   

19.
In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula.  相似文献   

20.
In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号